This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167894 #74 Jan 12 2025 19:32:11 %S A167894 1,-1,-1,-3,-13,-71,-461,-3447,-29093,-273343,-2829325,-31998903, %T A167894 -392743957,-5201061455,-73943424413,-1123596277863,-18176728317413, %U A167894 -311951144828863,-5661698774848621,-108355864447215063 %N A167894 Expansion of g.f.: 1/(Sum_{k >= 0} k!*x^k). %C A167894 Essentially the same as A003319, which is the main entry for these numbers. - _N. J. A. Sloane_, Jun 11 2013 %D A167894 M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 40. %H A167894 G. C. Greubel, <a href="/A167894/b167894.txt">Table of n, a(n) for n = 0..400</a> %F A167894 a(n) = - Sum_{i=0..n-1} a(i)*(n-i)! for n > 0 with a(0) = 1. - _Vladimir Kruchinin_, Oct 10 2024 %F A167894 From _Sergei N. Gladkovskii_, Jun 24 2012, Oct 15 2012, Nov 18 2012, Dec 26 2012, Apr 25 2013, May 29 2013, Aug 08 2013, Nov 19 2013: (Start) Continued fractions: %F A167894 G.f.: 1 - x/Q(0), where Q(k) = 1 - (k+1)*x/(1 - (k+2)*x/Q(k+1)). %F A167894 G.f.: U(0) where U(k) = 1 - x*(k+1)/(1 - x*(k+1)/U(k+1)). %F A167894 G.f.: 1/G(0) where G(k) = 1 + x*(2*k+1)/(1 - 2*x*(k+1)/(2*x*(k+1) + 1/G(k+1))). %F A167894 G.f.: A(x) = 1 - x/G(0) where G(k) = 1 + (k+1)*x - x*(k+2)/G(k+1). %F A167894 G.f.: x*Q(0), where Q(k) = 1/x - 1 - 2*k - (k+1)^2/Q(k+1). %F A167894 G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 1/(1 - 1/(2*x*(k+1)) + 1/G(k+1))). %F A167894 G.f.: 2/Q(0), where Q(k) = 1 + 1/(1 - x*(k+1)/(x*(k+1) + 1/Q(k+1) )). %F A167894 G.f.: conjecture: Q(0), where Q(k) = 1 + k*x - (k+1)*x/Q(k+1). (End) %F A167894 a(n) ~ -n! * (1 - 2/n - 1/n^2 - 5/n^3 - 32/n^4 - 253/n^5 - 2381/n^6 - 25912/n^7 - 319339/n^8 - 4388949/n^9 - 66495386/n^10 - ...). - _Vaclav Kotesovec_, Dec 08 2020 %t A167894 CoefficientList[Series[1/(Sum[k!*x^k, {k, 0, 25}]), {x, 0, 20}], x] (* _G. C. Greubel_, Jun 30 2016 *) %o A167894 (Maxima) a(n) := if n=0 then 1 else -sum( a(i)*(n-i)!,i,0,n-1); /* _Vladimir Kruchinin_, Oct 10 2024 */ %o A167894 (Sage) %o A167894 def A167894_list(len): %o A167894 R, C = [1], [1]+[0]*(len-1) %o A167894 for n in (1..len-1): %o A167894 for k in range(n, 0, -1): %o A167894 C[k] = C[k-1] * k %o A167894 C[0] = -sum(C[k] for k in (1..n)) %o A167894 R.append(C[0]) %o A167894 return R %o A167894 print(A167894_list(20)) # _Peter Luschny_, Feb 19 2016 %o A167894 (Sage) m=20; (1/sum(factorial(k)*x^k for k in range(m+1))).series(x, m).coefficients(x, sparse=False) # _G. C. Greubel_, Feb 07 2019 %o A167894 (PARI) m=20; my(x='x+O('x^m)); Vec(1/sum(k=0,m+1, k!*x^k)) \\ _G. C. Greubel_, Feb 07 2019 %o A167894 (Magma) m:=20; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( 1/(&+[Factorial(k)*x^k: k in [0..m+1]]) )); // _G. C. Greubel_, Feb 07 2019 %Y A167894 Cf. A003319, A158882. %K A167894 sign %O A167894 0,4 %A A167894 _Philippe Deléham_, Nov 15 2009