cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167924 Number of reduced words of length n in Coxeter group on 16 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

This page as a plain text file.
%I A167924 #18 Sep 11 2023 01:49:04
%S A167924 1,16,240,3600,54000,810000,12150000,182250000,2733750000,41006250000,
%T A167924 615093750000,9226406250000,138396093750000,2075941406250000,
%U A167924 31139121093750000,467086816406250000,7006302246093749880
%N A167924 Number of reduced words of length n in Coxeter group on 16 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
%C A167924 The initial terms coincide with those of A170735, although the two sequences are eventually different.
%C A167924 Computed with MAGMA using commands similar to those used to compute A154638.
%H A167924 G. C. Greubel, <a href="/A167924/b167924.txt">Table of n, a(n) for n = 0..500</a>
%H A167924 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (14,14,14,14,14,14,14,14,14,14,14,14,14,14,14,-105).
%F A167924 G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 105*t^16 - 14*t^15 - 14*t^14 - 14*t^13 - 14*t^12 - 14*t^11 - 14*t^10 - 14*t^9 - 14*t^8 - 14*t^7 - 14*t^6 - 14*t^5 - 14*t^4 - 14*t^3 - 14*t^2 - 14*t + 1).
%F A167924 From _G. C. Greubel_, Sep 10 2023: (Start)
%F A167924 G.f.: (1+t)*(1-t^16)/(1 - 15*t + 119*t^16 - 105*t^17).
%F A167924 a(n) = 14*Sum_{j=1..15} a(n-j) - 105*a(n-16). (End)
%t A167924 CoefficientList[Series[(1+t)*(1-t^16)/(1-15*t+119*t^16-105*t^17), {t, 0, 50}], t] (* _G. C. Greubel_, Jul 01 2016; Sep 10 2023 *)
%t A167924 coxG[{16,105,-14}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Jul 10 2017 *)
%o A167924 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-15*x+119*x^16-105*x^17) )); // _G. C. Greubel_, Sep 10 2023
%o A167924 (SageMath)
%o A167924 def A167924_list(prec):
%o A167924     P.<x> = PowerSeriesRing(ZZ, prec)
%o A167924     return P( (1+x)*(1-x^16)/(1-15*x+119*x^16-105*x^17) ).list()
%o A167924 A167924_list(40) # _G. C. Greubel_, Sep 10 2023
%Y A167924 Cf. A154638, A169452, A170735.
%K A167924 nonn
%O A167924 0,2
%A A167924 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009