This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167925 #19 Sep 13 2023 02:14:25 %S A167925 0,1,1,1,2,3,0,2,6,12,-1,0,9,32,75,-1,-4,9,80,275,684,0,-8,0,192,1000, %T A167925 3240,8232,1,-8,-27,448,3625,15336,47677,122368,1,0,-81,1024,13125, %U A167925 72576,276115,835584,2158569,0,16,-162,2304,47500,343440,1599066,5705728,16953624,44010000 %N A167925 Triangle, T(n, k) = (sqrt(k+1))^(n-1)*ChebyshevU(n-1, sqrt(k+1)/2), read by rows. %H A167925 G. C. Greubel, <a href="/A167925/b167925.txt">Rows n = 0..50 of the triangle, flattened</a> %F A167925 T(n, k) = (-1)^(n+1) * [x^(n-1)]( 1/(1 + (k+1)*x + (k+1)*x^2) ). - _Francesco Daddi_, Aug 04 2011 (modified by _G. C. Greubel_, Sep 11 2023) %F A167925 From _G. C. Greubel_, Sep 11 2023: (Start) %F A167925 T(n, k) = (sqrt(k+1))^(n-1)*ChebyshevU(n-1, sqrt(k+1)/2). %F A167925 T(n, 0) = A128834(n). %F A167925 T(n, 1) = A009545(n) = A099087(n-1). %F A167925 T(n, 2) = A057083(n-1). %F A167925 T(n, 3) = A001787(n). %F A167925 T(n, 4) = A030191(n-1). %F A167925 T(n, 5) = A030192(n-1). %F A167925 T(n, 6) = A030240(n-1). %F A167925 T(n, 7) = A057084(n-1). %F A167925 T(n, 8) = A057085(n). %F A167925 T(n, 9) = A057086(n-1). %F A167925 T(n, 10) = A190871(n). %F A167925 T(n, 11) = A190873(n). (End) %e A167925 Triangle begins as: %e A167925 0; %e A167925 1, 1; %e A167925 1, 2, 3; %e A167925 0, 2, 6, 12; %e A167925 -1, 0, 9, 32, 75; %e A167925 -1, -4, 9, 80, 275, 684; %e A167925 0, -8, 0, 192, 1000, 3240, 8232; %e A167925 1, -8, -27, 448, 3625, 15336, 47677, 122368; %e A167925 1, 0, -81, 1024, 13125, 72576, 276115, 835584, 2158569; %t A167925 (* First program *) %t A167925 m[k_]= {{k,1}, {-1,1}}; %t A167925 v[0, k_]:= {0,1}; %t A167925 v[n_, k_]:= v[n, k]= m[k].v[n-1,k]; %t A167925 T[n_, k_]:= v[n, k][[1]]; %t A167925 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten %t A167925 (* Second program *) %t A167925 A167925[n_, k_]:= (Sqrt[k+1])^(n-1)*ChebyshevU[n-1, Sqrt[k+1]/2]; %t A167925 Table[A167925[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Sep 11 2023 *) %o A167925 (Magma) %o A167925 A167925:= func< n,k | Round((Sqrt(k+1))^(n-1)*Evaluate(ChebyshevSecond(n), Sqrt(k+1)/2)) >; %o A167925 [A167925(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Sep 11 2023 %o A167925 (SageMath) %o A167925 def A167925(n,k): return (sqrt(k+1))^(n-1)*chebyshev_U(n-1, sqrt(k+1)/2) %o A167925 flatten([[A167925(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Sep 11 2023 %Y A167925 Cf. A009545, A030191, A030192, A030240, A057083, A057084, A057085, A057086, A099087, A128834, A190871, A190873. %K A167925 sign,tabl %O A167925 0,5 %A A167925 _Roger L. Bagula_, Nov 15 2009 %E A167925 Edited by _G. C. Greubel_, Sep 11 2023