This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167933 #17 Sep 08 2022 08:45:48 %S A167933 1,21,420,8400,168000,3360000,67200000,1344000000,26880000000, %T A167933 537600000000,10752000000000,215040000000000,4300800000000000, %U A167933 86016000000000000,1720320000000000000,34406400000000000000 %N A167933 Number of reduced words of length n in Coxeter group on 21 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I. %C A167933 The initial terms coincide with those of A170740, although the two sequences are eventually different. %C A167933 Computed with MAGMA using commands similar to those used to compute A154638. %H A167933 G. C. Greubel, <a href="/A167933/b167933.txt">Table of n, a(n) for n = 0..500</a> %H A167933 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, -190). %F A167933 G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 190*t^16 - 19*t^15 - 19*t^14 - 19*t^13 - 19*t^12 - 19*t^11 - 19*t^10 - 19*t^9 - 19*t^8 - 19*t^7 - 19*t^6 - 19*t^5 - 19*t^4 - 19*t^3 - 19*t^2 - 19*t + 1). %F A167933 G.f.: (1+x)*(1-x^16)/(1 -20*x +209*x^16 -190*x^17). - _G. C. Greubel_, Apr 25 2019 %t A167933 CoefficientList[Series[(1+x)*(1-x^16)/(1-20*x+209*x^16-190*x^17), {x, 0, 20}], x] (* _G. C. Greubel_, Jul 01 2016, modified Apr 25 2019 *) %t A167933 coxG[{16, 190, -19, 20}] (* The coxG program is at A169452 *) (* _G. C. Greubel_, Apr 25 2019 *) %o A167933 (PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^16)/(1-20*x+209*x^16-190*x^17)) \\ _G. C. Greubel_, Apr 25 2019 %o A167933 (Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^16)/(1-20*x+209*x^16-190*x^17) )); // _G. C. Greubel_, Apr 25 2019 %o A167933 (Sage) ((1+x)*(1-x^16)/(1-20*x+209*x^16-190*x^17)).series(x, 20).coefficients(x, sparse=False) # _G. C. Greubel_, Apr 25 2019 %Y A167933 Cf. A154638, A170740. %K A167933 nonn %O A167933 0,2 %A A167933 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009