This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167938 #15 Sep 09 2023 06:53:32 %S A167938 1,24,552,12696,292008,6716184,154472232,3552861336,81715810728, %T A167938 1879463646744,43227663875112,994236269127576,22867434189934248, %U A167938 525950986368487704,12096872686475217192,278228071788929995416 %N A167938 Number of reduced words of length n in Coxeter group on 24 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I. %C A167938 The initial terms coincide with those of A170743, although the two sequences are eventually different. %C A167938 Computed with MAGMA using commands similar to those used to compute A154638. %H A167938 G. C. Greubel, <a href="/A167938/b167938.txt">Table of n, a(n) for n = 0..500</a> %H A167938 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (22,22,22,22,22,22,22,22,22,22,22,22,22,22,22,-253). %F A167938 G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 253*t^16 - 22*t^15 - 22*t^14 - 22*t^13 - 22*t^12 - 22*t^11 - 22*t^10 - 22*t^9 - 22*t^8 - 22*t^7 - 22*t^6 - 22*t^5 - 22*t^4 - 22*t^3 - 22*t^2 - 22*t + 1). %F A167938 From _G. C. Greubel_, Sep 09 2023: (Start) %F A167938 G.f.: (1+t)*(1-t^16)/(1 - 23*t + 275*t^16 - 253*t^17). %F A167938 a(n) = 22*Sum_{j=1..15} a(n-j) - 253*a(n-16). (End) %t A167938 CoefficientList[Series[(1+t)*(1-t^16)/(1-23*t+275*t^16-253*t^17), {t, 0, 50}], t] (* _G. C. Greubel_, Jul 01 2016; Sep 09 2023 *) %t A167938 coxG[{16,253,-22}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Mar 18 2022 *) %o A167938 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-23*x+275*x^16-253*x^17) )); // _G. C. Greubel_, Sep 09 2023 %o A167938 (SageMath) %o A167938 def A167938_list(prec): %o A167938 P.<x> = PowerSeriesRing(ZZ, prec) %o A167938 return P( (1+x)*(1-x^16)/(1-23*x+275*x^16-253*x^17) ).list() %o A167938 A167938_list(40) # _G. C. Greubel_, Sep 09 2023 %Y A167938 Cf. A154638, A167881, A169452, A170758. %K A167938 nonn %O A167938 0,2 %A A167938 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009