This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167940 #15 Sep 09 2023 06:54:03 %S A167940 1,25,600,14400,345600,8294400,199065600,4777574400,114661785600, %T A167940 2751882854400,66045188505600,1585084524134400,38042028579225600, %U A167940 913008685901414400,21912208461633945600,525893003079214694400 %N A167940 Number of reduced words of length n in Coxeter group on 25 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I. %C A167940 The initial terms coincide with those of A170744, although the two sequences are eventually different. %C A167940 Computed with MAGMA using commands similar to those used to compute A154638. %H A167940 G. C. Greubel, <a href="/A167940/b167940.txt">Table of n, a(n) for n = 0..500</a> %H A167940 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (23,23,23,23,23,23,23,23,23,23,23,23,23,23,23,-276). %F A167940 G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 276*t^16 - 23*t^15 - 23*t^14 - 23*t^13 - 23*t^12 - 23*t^11 - 23*t^10 - 23*t^9 - 23*t^8 - 23*t^7 - 23*t^6 - 23*t^5 - 23*t^4 - 23*t^3 - 23*t^2 - 23*t + 1). %F A167940 From _G. C. Greubel_, Sep 08 2023: (Start) %F A167940 G.f.: (1+t)*(1-t^16)/(1 - 24*t + 299*t^16 - 276*t^17). %F A167940 a(n) = 23*Sum_{j=1..15} a(n-j) - 276*a(n-16). (End) %t A167940 coxG[{16,276,-23}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, May 05 2015 *) %t A167940 CoefficientList[Series[(1+t)*(1-t^16)/(1-24*t+299*t^16-276*t^17), {t, 0, 50}], t] (* _G. C. Greubel_, Jul 01 2016; Sep 08 2023 *) %o A167940 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-24*x+299*x^16-276*x^17) )); // _G. C. Greubel_, Sep 08 2023 %o A167940 (SageMath) %o A167940 def A167940_list(prec): %o A167940 P.<x> = PowerSeriesRing(ZZ, prec) %o A167940 return P( (1+x)*(1-x^16)/(1-24*x+299*x^16-276*x^17) ).list() %o A167940 A167940_list(40) # _G. C. Greubel_, Sep 08 2023 %Y A167940 Cf. A154638, A169452, A170758. %K A167940 nonn %O A167940 0,2 %A A167940 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009