cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167941 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

This page as a plain text file.
%I A167941 #15 Sep 09 2023 06:53:53
%S A167941 1,26,650,16250,406250,10156250,253906250,6347656250,158691406250,
%T A167941 3967285156250,99182128906250,2479553222656250,61988830566406250,
%U A167941 1549720764160156250,38743019104003906250,968575477600097656250
%N A167941 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
%C A167941 The initial terms coincide with those of A170745, although the two sequences are eventually different.
%C A167941 Computed with MAGMA using commands similar to those used to compute A154638.
%H A167941 G. C. Greubel, <a href="/A167941/b167941.txt">Table of n, a(n) for n = 0..500</a>
%H A167941 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (24,24,24,24,24,24,24,24,24,24,24,24,24,24,24,-300).
%F A167941 G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 300*t^16 - 24*t^15 - 24*t^14 - 24*t^13 - 24*t^12 - 24*t^11 - 24*t^10 - 24*t^9 - 24*t^8 - 24*t^7 - 24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1).
%F A167941 From _G. C. Greubel_, Sep 08 2023: (Start)
%F A167941 G.f.: (1+t)*(1-t^16)/(1 - 25*t + 324*t^16 - 300*t^17).
%F A167941 a(n) = 24*Sum_{j=1..15} a(n-j) - 300*a(n-16). (End)
%t A167941 coxG[{16,300,-24}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Jul 01 2021 *)
%t A167941 CoefficientList[Series[(1+t)*(1-t^16)/(1-25*t+324*t^16-300*t^17), {t, 0, 50}], t] (* _G. C. Greubel_, Sep 08 2023 *)
%o A167941 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-25*x+324*x^16-300*x^17) )); // _G. C. Greubel_, Sep 08 2023
%o A167941 (SageMath)
%o A167941 def A167941_list(prec):
%o A167941     P.<x> = PowerSeriesRing(ZZ, prec)
%o A167941     return P( (1+x)*(1-x^16)/(1-25*x+324*x^16-300*x^17) ).list()
%o A167941 A167941_list(40) # _G. C. Greubel_, Sep 08 2023
%Y A167941 Cf. A154638, A169452, A170758.
%Y A167941 Cf. A167881, A167882, A167896 - A167900, A167908, A167914, A167916, A167919, A167922, A167923, A167924, A167926, A167927, A167929, A167931, A167933, A167935, A167937, A167938, A167940, A167942 - A167947, A167949 - A167962, A167978, A167980, A167988, A167989.
%K A167941 nonn
%O A167941 0,2
%A A167941 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009