cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167946 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

This page as a plain text file.
%I A167946 #18 Sep 07 2023 18:20:31
%S A167946 1,31,930,27900,837000,25110000,753300000,22599000000,677970000000,
%T A167946 20339100000000,610173000000000,18305190000000000,549155700000000000,
%U A167946 16474671000000000000,494240130000000000000,14827203900000000000000
%N A167946 Number of reduced words of length n in Coxeter group on 31 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
%C A167946 The initial terms coincide with those of A170750, although the two sequences are eventually different.
%C A167946 Computed with MAGMA using commands similar to those used to compute A154638.
%H A167946 G. C. Greubel, <a href="/A167946/b167946.txt">Table of n, a(n) for n = 0..500</a>
%H A167946 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (29,29,29,29,29,29,29,29,29,29,29,29,29,29,29,-435).
%F A167946 G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 435*t^16 - 29*t^15 - 29*t^14 - 29*t^13 - 29*t^12 - 29*t^11 - 29*t^10 - 29*t^9 - 29*t^8 - 29*t^7 - 29*t^6 - 29*t^5 - 29*t^4 - 29*t^3 - 29*t^2 - 29*t + 1).
%F A167946 From _G. C. Greubel_, Sep 07 2023: (Start)
%F A167946 G.f.: (1+t)*(1-t^16)/(1 - 30*t + 464*t^16 - 435*t^17).
%F A167946 a(n) = 37*Sum_{j=1..15} a(n-j) - 703*a(n-16). (End)
%t A167946 CoefficientList[Series[(1+t)*(1-t^16)/(1-30*t+464*t^16-435*t^17), {t, 0, 50}], t] (* _G. C. Greubel_, Jul 02 2016; Sep 07 2023 *)
%t A167946 coxG[{16, 435, -29, 40}] (* The coxG program is at A169452 *) (* _G. C. Greubel_, Sep 07 2023 *)
%o A167946 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-30*x+464*x^16-435*x^17) )); // _G. C. Greubel_, Sep 07 2023
%o A167946 (SageMath)
%o A167946 def A167946_list(prec):
%o A167946     P.<x> = PowerSeriesRing(ZZ, prec)
%o A167946     return P( (1+x)*(1-x^16)/(1-30*x+464*x^16-435*x^17) ).list()
%o A167946 A167946_list(40) # _G. C. Greubel_, Sep 07 2023
%Y A167946 Cf. A154638, A169452, A170750.
%K A167946 nonn
%O A167946 0,2
%A A167946 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009