This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167951 #17 Sep 06 2023 18:08:49 %S A167951 1,35,1190,40460,1375640,46771760,1590239840,54068154560, %T A167951 1838317255040,62502786671360,2125094746826240,72253221392092160, %U A167951 2456609527331133440,83524723929258536960,2839840613594790256640,96554580862222868725760 %N A167951 Number of reduced words of length n in Coxeter group on 35 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I. %C A167951 The initial terms coincide with those of A170754, although the two sequences are eventually different. %C A167951 Computed with MAGMA using commands similar to those used to compute A154638. %H A167951 G. C. Greubel, <a href="/A167951/b167951.txt">Table of n, a(n) for n = 0..500</a> %H A167951 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,-561). %F A167951 G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 561*t^16 - 33*t^15 - 33*t^14 - 33*t^13 - 33*t^12 - 33*t^11 - 33*t^10 - 33*t^9 - 33*t^8 - 33*t^7 - 33*t^6 - 33*t^5 - 33*t^4 - 33*t^3 - 33*t^2 - 33*t + 1). %F A167951 From _G. C. Greubel_, Sep 06 2023: (Start) %F A167951 G.f.: (1+t)*(1-t^16)/(1 - 34*t + 594*t^16 - 561*t^17). %F A167951 a(n) = 33*Sum_{j=1..15} a(n-j) - 561*a(n-16). (End) %t A167951 CoefficientList[Series[(1+t)*(1-t^16)/(1-34*t+594*t^16-561*t^17), {t, 0, 50}], t] (* _G. C. Greubel_, Jul 02 2016; Sep 06 2023 *) %t A167951 coxG[{16,561,-33}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, May 21 2017 *) %o A167951 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-34*x+594*x^16-561*x^17) )); // _G. C. Greubel_, Sep 06 2023 %o A167951 (SageMath) %o A167951 def A167955_list(prec): %o A167951 P.<x> = PowerSeriesRing(ZZ, prec) %o A167951 return P( (1+x)*(1-x^16)/(1-34*x+594*x^16-561*x^17) ).list() %o A167951 A167955_list(40) # _G. C. Greubel_, Sep 06 2023 %Y A167951 Cf. A154638, A169452, A170754. %K A167951 nonn %O A167951 0,2 %A A167951 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009