This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167952 #20 Sep 06 2023 17:31:06 %S A167952 1,36,1260,44100,1543500,54022500,1890787500,66177562500, %T A167952 2316214687500,81067514062500,2837362992187500,99307704726562500, %U A167952 3475769665429687500,121651938290039062500,4257817840151367187500,149023624405297851562500 %N A167952 Number of reduced words of length n in Coxeter group on 36 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I. %C A167952 The initial terms coincide with those of A170755, although the two sequences are eventually different. %C A167952 Computed with MAGMA using commands similar to those used to compute A154638. %H A167952 G. C. Greubel, <a href="/A167952/b167952.txt">Table of n, a(n) for n = 0..500</a> %H A167952 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (34,34,34,34,34,34,34,34,34,34,34,34,34,34,34,-595). %F A167952 G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 595*t^16 - 34*t^15 - 34*t^14 - 34*t^13 - 34*t^12 - 34*t^11 - 34*t^10 - 34*t^9 - 34*t^8 - 34*t^7 - 34*t^6 - 34*t^5 - 34*t^4 - 34*t^3 - 34*t^2 - 34*t + 1). %F A167952 From _G. C. Greubel_, Sep 06 2023: (Start) %F A167952 G.f.: (1+t)*(1-t^16)/(1 - 35*t + 629*t^16 - 595*t^17). %F A167952 a(n) = 34*Sum_{j=1..15} a(n-j) - 595*a(n-16). (End) %t A167952 coxG[{16,595,-34}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Apr 07 2015 *) %t A167952 CoefficientList[Series[(1+t)*(1-t^16)/(1-35*t+629*t^16-595*t^17), {t, 0, 50}], t] (* _G. C. Greubel_, Jul 02 2016; Sep 06 2023 *) %o A167952 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-35*x+629*x^16-595*x^17) )); // _G. C. Greubel_, Sep 06 2023 %o A167952 (SageMath) %o A167952 def A167955_list(prec): %o A167952 P.<x> = PowerSeriesRing(ZZ, prec) %o A167952 return P( (1+x)*(1-x^16)/(1-35*x+629*x^16-595*x^17) ).list() %o A167952 A167955_list(40) # _G. C. Greubel_, Sep 06 2023 %Y A167952 Cf. A154638, A169452, A170755. %K A167952 nonn %O A167952 0,2 %A A167952 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009