This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167953 #20 Sep 06 2023 17:31:25 %S A167953 1,37,1332,47952,1726272,62145792,2237248512,80540946432, %T A167953 2899474071552,104381066575872,3757718396731392,135277862282330112, %U A167953 4870003042163884032,175320109517899825152,6311523942644393705472 %N A167953 Number of reduced words of length n in Coxeter group on 37 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I. %C A167953 The initial terms coincide with those of A170756, although the two sequences are eventually different. %C A167953 Computed with MAGMA using commands similar to those used to compute A154638. %H A167953 G. C. Greubel, <a href="/A167953/b167953.txt">Table of n, a(n) for n = 0..500</a> %H A167953 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (35,35,35,35,35,35,35,35,35,35,35,35,35,35,35,-630). %F A167953 G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 630*t^16 - 35*t^15 - 35*t^14 - 35*t^13 - 35*t^12 - 35*t^11 - 35*t^10 - 35*t^9 - 35*t^8 - 35*t^7 - 35*t^6 - 35*t^5 - 35*t^4 - 35*t^3 - 35*t^2 - 35*t + 1). %F A167953 From _G. C. Greubel_, Sep 06 2023: (Start) %F A167953 G.f.: (1+t)*(1-t^16)/(1 - 36*t + 665*t^16 - 630*t^17). %F A167953 a(n) = 35*Sum_{j=1..15} a(n-j) - 630*a(n-16). (End) %t A167953 CoefficientList[Series[(1+t)*(1-t^16)/(1-36*t+665*t^16-630*t^17), {t, 0, 50}], t] (* _G. C. Greubel_, Jul 02 2016; Sep 06 2023 *) %t A167953 coxG[{16,630,-35}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Oct 14 2022 *) %o A167953 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-36*x+665*x^16-630*x^17) )); // _G. C. Greubel_, Sep 06 2023 %o A167953 (SageMath) %o A167953 def A167955_list(prec): %o A167953 P.<x> = PowerSeriesRing(ZZ, prec) %o A167953 return P( (1+x)*(1-x^16)/(1-36*x+665*x^16-630*x^17) ).list() %o A167953 A167955_list(40) # _G. C. Greubel_, Sep 06 2023 %Y A167953 Cf. A154638, A169452, A170756. %K A167953 nonn %O A167953 0,2 %A A167953 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009