cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167955 Number of reduced words of length n in Coxeter group on 39 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

This page as a plain text file.
%I A167955 #15 Sep 06 2023 17:21:30
%S A167955 1,39,1482,56316,2140008,81320304,3090171552,117426518976,
%T A167955 4462207721088,169563893401344,6443427949251072,244850262071540736,
%U A167955 9304309958718547968,353563778431304822784,13435423580389583265792
%N A167955 Number of reduced words of length n in Coxeter group on 39 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
%C A167955 The initial terms coincide with those of A170758, although the two sequences are eventually different.
%C A167955 Computed with MAGMA using commands similar to those used to compute A154638.
%H A167955 G. C. Greubel, <a href="/A167955/b167955.txt">Table of n, a(n) for n = 0..500</a>
%H A167955 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (37,37,37,37,37,37,37,37,37,37,37,37,37,37,37,-703).
%F A167955 G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 703*t^16 - 37*t^15 - 37*t^14 - 37*t^13 - 37*t^12 - 37*t^11 - 37*t^10 - 37*t^9 - 37*t^8 - 37*t^7 - 37*t^6 - 37*t^5 - 37*t^4 - 37*t^3 - 37*t^2 - 37*t + 1).
%F A167955 From _G. C. Greubel_, Sep 06 2023: (Start)
%F A167955 G.f.: (1+t)*(1-t^16)/(1 - 38*t + 740*t^16 - 703*t^17).
%F A167955 a(n) = 37*Sum_{j=1..15} a(n-j) - 703*a(n-16). (End)
%t A167955 CoefficientList[Series[(1+t)*(1-t^16)/(1-38*t+740*t^16-703*t^17), {t, 0, 50}], t] (* _G. C. Greubel_, Jul 02 2016; Sep 06 2023 *)
%t A167955 coxG[{16, 703, -37, 40}] (* The coxG program is at A169452 *) (* _G. C. Greubel_, Sep 06 2023 *)
%o A167955 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-38*x+740*x^16-703*x^17) )); // _G. C. Greubel_, Sep 06 2023
%o A167955 (SageMath)
%o A167955 def A167955_list(prec):
%o A167955     P.<x> = PowerSeriesRing(ZZ, prec)
%o A167955     return P( (1+x)*(1-x^16)/(1-38*x+740*x^16-703*x^17) ).list()
%o A167955 A167955_list(40) # _G. C. Greubel_, Sep 06 2023
%Y A167955 Cf. A154638, A169452, A170758.
%K A167955 nonn
%O A167955 0,2
%A A167955 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009