This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167958 #20 Jul 14 2023 08:48:25 %S A167958 1,42,1722,70602,2894682,118681962,4865960442,199504378122, %T A167958 8179679503002,335366859623082,13750041244546362,563751691026400842, %U A167958 23113819332082434522,947666592615379815402,38854330297230572431482 %N A167958 Number of reduced words of length n in Coxeter group on 42 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I. %C A167958 The initial terms coincide with those of A170761, although the two sequences are eventually different. %C A167958 Computed with MAGMA using commands similar to those used to compute A154638. %H A167958 G. C. Greubel, <a href="/A167958/b167958.txt">Table of n, a(n) for n = 0..500</a> %H A167958 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (40,40,40,40,40,40,40,40,40,40,40,40,40,40,40,-820). %F A167958 G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 820*t^16 - 40*t^15 - 40*t^14 - 40*t^13 - 40*t^12 - 40*t^11 - 40*t^10 - 40*t^9 - 40*t^8 - 40*t^7 - 40*t^6 - 40*t^5 - 40*t^4 - 40*t^3 - 40*t^2 - 40*t + 1). %F A167958 From _G. C. Greubel_, Jul 14 2023: (Start) %F A167958 G.f.: (1 + t)*(1 - t^16)/(1 - 41*t + 860*t^16 - 820*t^17). %F A167958 a(n) = -820*a(n-16) + 40*Sum_{j=1..15} a(n-j). (End) %t A167958 CoefficientList[Series[(1+t)*(1-t^16)/(1-41*t+860*t^16 -820*t^17), {t, 0, 40}], t] (* _G. C. Greubel_, Jul 02 2016; Jul 14 2023 *) %t A167958 coxG[{16, 820, -40, 30}] (* The coxG program is at A169452 *) (* _G. C. Greubel_, Jul 14 2023 *) %o A167958 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-41*x+860*x^16-820*x^17) )); // _G. C. Greubel_, Jul 14 2023 %o A167958 (SageMath) %o A167958 def A167958_list(prec): %o A167958 P.<x> = PowerSeriesRing(ZZ, prec) %o A167958 return P( (1+x)*(1-x^16)/(1-41*x+860*x^16-820*x^17) ).list() %o A167958 A167958_list(40) # _G. C. Greubel_, Jul 14 2023 %Y A167958 Cf. A154638, A169452, A170761. %K A167958 nonn %O A167958 0,2 %A A167958 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009