This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167959 #16 Apr 27 2023 17:04:21 %S A167959 1,43,1806,75852,3185784,133802928,5619722976,236028364992, %T A167959 9913191329664,416354035845888,17486869505527296,734448519232146432, %U A167959 30846837807750150144,1295567187925506306048,54413821892871264854016 %N A167959 Number of reduced words of length n in Coxeter group on 43 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I. %C A167959 The initial terms coincide with those of A170762, although the two sequences are eventually different. %C A167959 Computed with MAGMA using commands similar to those used to compute A154638. %H A167959 G. C. Greubel, <a href="/A167959/b167959.txt">Table of n, a(n) for n = 0..500</a> %H A167959 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (41,41,41,41,41,41,41,41,41,41, 41,41,41,41,41,-861). %F A167959 G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 861*t^16 - 41*t^15 - 41*t^14 - 41*t^13 - 41*t^12 - 41*t^11 - 41*t^10 - 41*t^9 - 41*t^8 - 41*t^7 - 41*t^6 - 41*t^5 - 41*t^4 - 41*t^3 - 41*t^2 - 41*t + 1). %F A167959 From _G. C. Greubel_, Apr 27 2023: (Start) %F A167959 G.f.: (1 + x)*(1 + x^16)/(1 - 42*x + 861*x^16 - 820*x^17). %F A167959 a(n) = 41*Sum_{k=1..15} a(n-k) - 861*a(n-16). (End) %t A167959 CoefficientList[Series[(1+x)*(1+x^16)/(1-42*x+861*x^16-820*x^17), {x, 0, 50}], x] (* _G. C. Greubel_, Jul 02 2016; Apr 27 2023 *) %t A167959 coxG[{16, 861, -41, 40}] (* The coxG program is at A169452 *) (* _G. C. Greubel_, Apr 27 2023 *) %o A167959 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1+x^16)/(1-42*x+861*x^16-820*x^17) )); // _G. C. Greubel_, Apr 27 2023 %o A167959 (SageMath) %o A167959 def A167959_list(prec): %o A167959 P.<x> = PowerSeriesRing(ZZ, prec) %o A167959 return P( (1+x)*(1+x^16)/(1-42*x+861*x^16-820*x^17) ).list() %o A167959 A167959_list(40) # _G. C. Greubel_, Apr 27 2023 %Y A167959 Cf. A154638, A169452, A170762. %K A167959 nonn %O A167959 0,2 %A A167959 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009