This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167960 #18 Apr 27 2023 07:09:30 %S A167960 1,44,1892,81356,3498308,150427244,6468371492,278139974156, %T A167960 11960018888708,514280812214444,22114074925221092,950905221784506956, %U A167960 40888924536733799108,1758223755079553361644,75603621468420794550692 %N A167960 Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I. %C A167960 The initial terms coincide with those of A170763, although the two sequences are eventually different. %C A167960 Computed with MAGMA using commands similar to those used to compute A154638. %H A167960 G. C. Greubel, <a href="/A167960/b167960.txt">Table of n, a(n) for n = 0..500</a> %H A167960 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,-903). %F A167960 G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 903*t^16 - 42*t^15 - 42*t^14 - 42*t^13 - 42*t^12 - 42*t^11 - 42*t^10 - 42*t^9 - 42*t^8 - 42*t^7 - 42*t^6 - 42*t^5 - 42*t^4 - 42*t^3 - 42*t^2 - 42*t + 1). %F A167960 From _G. C. Greubel_, Apr 27 2023: (Start) %F A167960 G.f.: (1 + x)*(1 + x^16)/(1 - 43*x + 903*x^16 - 861*x^17). %F A167960 a(n) = 42*Sum_{k=1..m-1} a(n-k) - 903*a(n-m). (End) %t A167960 CoefficientList[Series[(1+x)*(1+x^16)/(1-43*x+903*x^16-861*x^17), {x, 0, 50}], x] (* _G. C. Greubel_, Jul 02 2016; Apr 27 2023 *) %t A167960 coxG[{16,903,-42}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Jul 19 2021 *) %o A167960 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1+x^16)/(1-43*x+903*x^16-861*x^17) )); // _G. C. Greubel_, Apr 27 2023 %o A167960 (SageMath) %o A167960 def A167960_list(prec): %o A167960 P.<x> = PowerSeriesRing(ZZ, prec) %o A167960 return P( (1+x)*(1+x^16)/(1-43*x+903*x^16-861*x^17) ).list() %o A167960 A167960_list(40) # _G. C. Greubel_, Apr 27 2023 %Y A167960 Cf. A154638, A169452, A170763. %K A167960 nonn %O A167960 0,2 %A A167960 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009