This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167961 #14 Apr 27 2023 07:06:48 %S A167961 1,45,1980,87120,3833280,168664320,7421230080,326534123520, %T A167961 14367501434880,632170063134720,27815482777927680,1223881242228817920, %U A167961 53850774658067988480,2369434084954991493120,104255099738019625697280 %N A167961 Number of reduced words of length n in Coxeter group on 45 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I. %C A167961 The initial terms coincide with those of A170764, although the two sequences are eventually different. %C A167961 Computed with MAGMA using commands similar to those used to compute A154638. %H A167961 G. C. Greubel, <a href="/A167961/b167961.txt">Table of n, a(n) for n = 0..500</a> %H A167961 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (43,43,43,43,43,43,43,43,43,43, 43,43,43,43,43,-946). %F A167961 G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 946*t^16 - 43*t^15 - 43*t^14 - 43*t^13 - 43*t^12 - 43*t^11 - 43*t^10 - 43*t^9 - 43*t^8 - 43*t^7 - 43*t^6 - 43*t^5 - 43*t^4 - 43*t^3 - 43*t^2 - 43*t + 1). %F A167961 From _G. C. Greubel_, Apr 27 2023: (Start) %F A167961 G.f.: (1 + x)*(1 + x^16)/(1 - 44*x + 946*x^16 - 903*x^17). %F A167961 a(n) = 43*Sum_{k=1..15} a(n-k) - 946*a(n-16). (End) %t A167961 CoefficientList[Series[(1+x)*(1+x^16)/(1-44*x+946*x^16-903*x^17), {x, 0, 50}], x] (* _G. C. Greubel_, Jul 02 2016; Apr 27 2023 *) %t A167961 coxG[{16, 946, -43, 40}] (* The coxG program is at A169452 *) (* _G. C. Greubel_, Apr 27 2023 *) %o A167961 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1+x^16)/(1-44*x+946*x^16-903*x^17) )); // _G. C. Greubel_, Apr 27 2023 %o A167961 (SageMath) %o A167961 def A167961_list(prec): %o A167961 P.<x> = PowerSeriesRing(ZZ, prec) %o A167961 return P( (1+x)*(1+x^16)/(1-44*x+946*x^16-903*x^17) ).list() %o A167961 A167961_list(40) # _G. C. Greubel_, Apr 27 2023 %Y A167961 Cf. A154638, A169452, A170764. %K A167961 nonn %O A167961 0,2 %A A167961 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009