cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A167962 Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.

This page as a plain text file.
%I A167962 #15 Jan 18 2023 02:31:40
%S A167962 1,46,2070,93150,4191750,188628750,8488293750,381973218750,
%T A167962 17188794843750,773495767968750,34807309558593750,1566328930136718750,
%U A167962 70484801856152343750,3171816083526855468750,142731723758708496093750
%N A167962 Number of reduced words of length n in Coxeter group on 46 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
%C A167962 The initial terms coincide with those of A170765, although the two sequences are eventually different.
%C A167962 Computed with MAGMA using commands similar to those used to compute A154638.
%H A167962 G. C. Greubel, <a href="/A167962/b167962.txt">Table of n, a(n) for n = 0..500</a>
%H A167962 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (44,44,44,44,44,44,44,44,44,44,44,44,44,44,44,-990).
%F A167962 G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 990*t^16 - 44*t^15 - 44*t^14 - 44*t^13 - 44*t^12 - 44*t^11 - 44*t^10 - 44*t^9 - 44*t^8 - 44*t^7 - 44*t^6 - 44*t^5 - 44*t^4 - 44*t^3 - 44*t^2 - 44*t + 1).
%F A167962 From _G. C. Greubel_, Jan 17 2023: (Start)
%F A167962 a(n) = Sum_{j=1..15} a(n-j) - 990*a(n-16).
%F A167962 G.f.: (1+x)*(1-x^16)/(1 - 45*x + 1034*x^16 - 990*x^17). (End)
%t A167962 CoefficientList[Series[(1+t)*(1-t^16)/(1-45*t+1034*t^16-990*t^17), {t, 0, 50}], t] (* _G. C. Greubel_, Jul 03 2016 *)
%t A167962 coxG[{16,990,-44,40}] (* The coxG program is at A169452 *) (* _G. C. Greubel_, Jan 17 2023 *)
%o A167962 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-45*x+1034*x^16-990*x^17) )); // _G. C. Greubel_, Jan 17 2023
%o A167962 (SageMath)
%o A167962 def A167962_list(prec):
%o A167962     P.<x> = PowerSeriesRing(ZZ, prec)
%o A167962     return P( (1+x)*(1-x^16)/(1-45*x+1034*x^16-990*x^17) ).list()
%o A167962 A167962_list(40) # _G. C. Greubel_, Jan 17 2023
%Y A167962 Cf. A154638, A169452, A170765.
%K A167962 nonn
%O A167962 0,2
%A A167962 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009