This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167983 #20 Feb 16 2025 08:33:11 %S A167983 96,360,1440,7120,37728,196488,974592,4536000,19934208,82689264, %T A167983 322437312,1171745280,3924079104,11964375936,32761139328,79244294016, %U A167983 165800420352,291640320576,413774810112,443415854592,318534709248,114869295744 %N A167983 Number of n-cycles on the graph of the regular 24-cell, 3 <= n <= 24. %C A167983 The 24-cell is one of 6 regular convex polytopes in 4 dimensions. The Schläfli symbol of the 24-cell is {3,4,3}. %H A167983 Max Alekseyev, <a href="http://home.gwu.edu/~maxal/gpscripts/">PARI/GP scripts for various math problems</a> %H A167983 Max A. Alekseyev, Gérard P. Michon, <a href="http://arxiv.org/abs/1602.01396">Making Walks Count: From Silent Circles to Hamiltonian Cycles</a>, arXiv:1602.01396 [math.CO], 2016. %H A167983 A. Weimholt, <a href="http://www.weimholt.com/andrew/24.html">24-cell net</a> %H A167983 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/24-Cell.html">24-Cell </a> %H A167983 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CyclePolynomial.html">Cycle Polynomial</a> %e A167983 a(3) = 96, because there are 96 3-cycles on the graph of the 24-cell. %e A167983 Cycle polynomial is 96*x^3 + 360*x^4 + 1440*x^5 + 7120*x^6 + 37728*x^7 + 196488*x^8 + 974592*x^9 + 4536000*x^10 + 19934208*x^11 + 82689264*x^12 + 322437312*x^13 + 1171745280*x^14 + 3924079104*x^15 + 11964375936*x^16 + 32761139328*x^17 + 79244294016*x^18 + 165800420352*x^19 + 291640320576*x^20 + 413774810112*x^21 + 443415854592*x^22 + 318534709248*x^23 + 114869295744*x^24. %Y A167983 Cf. A167981 (2n-cycles on graph of the tesseract). %Y A167983 Cf. A167982 (n-cycles on graph of 16-cell). %Y A167983 Cf. A167984 (n-cycles on graph of 120-cell). %Y A167983 Cf. A167985 (n-cycles on graph of 600-cell). %Y A167983 Cf. A085452 (2k-cycles on graph of n-cube). %Y A167983 Cf. A144151 (ignoring first three columns (0<=k<=2), k-cycles on (n-1)-simplex). %Y A167983 Cf. A167986 (k-cycles on graph of n-orthoplex). %K A167983 fini,full,nonn %O A167983 3,1 %A A167983 _Andrew Weimholt_, Nov 16 2009 %E A167983 a(16)-a(24) and "full" keyword from _Max Alekseyev_, Nov 18 2009