This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A167988 #18 Jan 15 2023 02:18:05 %S A167988 1,49,2352,112896,5419008,260112384,12485394432,599298932736, %T A167988 28766348771328,1380784741023744,66277667569139712, %U A167988 3181328043318706176,152703746079297896448,7329779811806299029504,351829430966702353416192 %N A167988 Number of reduced words of length n in Coxeter group on 49 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I. %C A167988 The initial terms coincide with those of A170768, although the two sequences are eventually different. %C A167988 Computed with Magma using commands similar to those used to compute A154638. %H A167988 G. C. Greubel, <a href="/A167988/b167988.txt">Table of n, a(n) for n = 0..500</a> %H A167988 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (47,47,47,47,47,47,47,47,47,47,47,47,47,47,47,-1128). %F A167988 G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 1128*t^16 - 47*t^15 - 47*t^14 - 47*t^13 - 47*t^12 - 47*t^11 - 47*t^10 - 47*t^9 - 47*t^8 - 47*t^7 - 47*t^6 - 47*t^5 - 47*t^4 - 47*t^3 - 47*t^2 - 47*t + 1). %F A167988 From _G. C. Greubel_, Jan 14 2023: (Start) %F A167988 a(n) = -1128*a(n-16) + 47*Sum_{j=1..15} a(n-j). %F A167988 G.f.: (1 + x)*(1 - x^16)/(1 - 48*x + 1175*x^16 - 1128*x^17). (End) %t A167988 coxG[{16,1128,-47}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, May 05 2015 *) %t A167988 CoefficientList[Series[(1+x)*(1-x^16)/(1-48*x+1175*x^16-1128*x^17), {x, 0, 50}], x] (* _G. C. Greubel_, Jul 03 2016; Jan 14 2023 *) %o A167988 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-48*x+1175*x^16-1128*x^17) )); // _G. C. Greubel_, Jan 14 2023 %o A167988 (Sage) %o A167988 def A167988_list(prec): %o A167988 P.<x> = PowerSeriesRing(ZZ, prec) %o A167988 return P( (1+x)*(1-x^16)/(1-48*x+1175*x^16-1128*x^17) ).list() %o A167988 A167988_list(40) # _G. C. Greubel_, Jan 14 2023 %Y A167988 Cf. A154638, A169452, A170768. %K A167988 nonn %O A167988 0,2 %A A167988 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009