This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168012 #18 Oct 23 2023 15:39:37 %S A168012 8,48,133,302,516,923,1346,2038,2768,3891,4810,6572,7959,10066,12186, %T A168012 14944,17261,21210,23992,28497,32550,37742,42111,48906,54252,61280, %U A168012 68153,76958,82942,94661,101882,113082,123794,135583,145630,161526 %N A168012 a(n) = sum of all divisors of all numbers k such that n^2 <= k < (n+1)^2. %H A168012 Paolo Xausa, <a href="/A168012/b168012.txt">Table of n, a(n) for n = 1..1000</a> %e A168012 a(2) = 48 because the numbers k are 4,5,6,7 and 8 (since 2^2 <= k < 3^2) and sigma(4) + sigma(5) + sigma(6) + sigma(7) + sigma(8) = 7 + 6 + 12 + 8 + 15 = 48, where sigma(n) is the sum of divisors of n (see A000203). %t A168012 A168012[n_]:=Sum[DivisorSigma[1,k],{k,n^2,(n+1)^2-1}]; %t A168012 Array[A168012,50] (* _Paolo Xausa_, Oct 23 2023 *) %o A168012 (PARI) a(n)=sum(k=n^2,(n+1)^2-1,sigma(k)) \\ _Franklin T. Adams-Watters_, May 14 2010 %o A168012 (Python) %o A168012 def A168012(n): %o A168012 a, b = n*(n+2),(n-1)*(n+1) %o A168012 return (sum((q:=a//k)*((s:=k<<1)+q+1)-(r:=b//k)*(s+r+1) for k in range(1,n))>>1)+5*n+3 # _Chai Wah Wu_, Oct 23 2023 %Y A168012 Cf. A000203, A024916, A168010, A168011, A168013. %K A168012 nonn %O A168012 1,1 %A A168012 _Omar E. Pol_, Nov 16 2009 %E A168012 More terms from _Franklin T. Adams-Watters_, May 14 2010