This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168030 #8 Jan 12 2023 01:38:29 %S A168030 1,1,0,1,1,0,1,0,1,0,1,1,0,1,0,1,0,1,1,1,0,1,1,1,0,0,1,0,1,0,0,0,0,1, %T A168030 1,0,1,1,0,1,1,1,0,1,0,1,0,1,0,0,1,1,1,1,0,1,1,1,0,1,0,1,0,0,1,0,1,0, %U A168030 0,0,1,0,0,0,0,1,1,0,1,1,0,1,0,0,0,0,1,1,0,1,0,1,0,1,0,1,0,0,0,0,1,1,1,1,0 %N A168030 Variant of pendular triangle A118340. %C A168030 Replaced the sums (f(a,b) = a + b) by the operators f(a,b) = a^2 -a*b + b^2 in the construction of triangle in A118340. %H A168030 G. C. Greubel, <a href="/A168030/b168030.txt">Rows n = 0..50 of the triangle, flattened</a> %F A168030 From _G. C. Greubel_, Jan 12 2023: (Start) %F A168030 T(n, k) = A118340(n, k) mod 2. %F A168030 Sum_{k=0..n} T(n, k) = A168148(n). (End) %e A168030 Triangle begins as: %e A168030 1; %e A168030 1, 0; %e A168030 1, 1, 0; %e A168030 1, 0, 1, 0; %e A168030 1, 1, 0, 1, 0; %e A168030 1, 0, 1, 1, 1, 0; %e A168030 1, 1, 1, 0, 0, 1, 0; %e A168030 1, 0, 0, 0, 0, 1, 1, 0; %e A168030 1, 1, 0, 1, 1, 1, 0, 1, 0; %e A168030 1, 0, 1, 0, 0, 1, 1, 1, 1, 0; %e A168030 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0; %t A168030 t[n_, k_, p_]:= t[n, k, p]= If[k<0 || k>n, 0, If[k==0, 1, If[n<=2*k, t[n,n-k-1,p] +p*t[n-1,k,p], t[n,n-k,p] +t[n-1,k, p]]]]; (* A118340 *) %t A168030 T[n_, k_, p_]:= Mod[t[n,k,p], 2]; (* A168030 *) %t A168030 Table[T[n,k,1], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Jan 12 2023 *) %o A168030 (Magma) %o A168030 function t(n, k) // t = A118340 %o A168030 if k lt 0 or k gt n then return 0; %o A168030 elif k eq 0 then return 1; %o A168030 elif n gt 2*k then return t(n, n-k) + t(n-1, k); %o A168030 else return t(n, n-k-1) + t(n-1, k); %o A168030 end if; return t; %o A168030 end function; %o A168030 T:= func< n,k | t(n,k) mod 2 >; // A168030 %o A168030 [T(n,k): k in [0..n], n in [0..15]]; %o A168030 (SageMath) %o A168030 @CachedFunction %o A168030 def t(n, k): # t = A118340 %o A168030 if (k<0 or k>n): return 0 %o A168030 elif (k==0): return 1 %o A168030 elif (n>2*k): return t(n, n-k) + t(n-1, k) %o A168030 else: return t(n, n-k-1) + t(n-1, k) %o A168030 def A168030(n,k): return t(n,k)%2 %o A168030 flatten([[A168030(n,k) for k in range(n+1)] for n in range(16)]) # _G. C. Greubel_, Jan 12 2023 %Y A168030 Cf. A118340, A168148 (row sums). %K A168030 nonn,tabl %O A168030 0,1 %A A168030 _Philippe Deléham_, Nov 17 2009