This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168043 #33 Jan 14 2022 07:32:58 %S A168043 1,2,4,7,13,23,40,68,114,189,311,509,830,1350,2192,3555,5761,9331, %T A168043 15108,24456,39582,64057,103659,167737,271418,439178,710620,1149823, %U A168043 1860469,3010319,4870816,7881164,12752010,20633205,33385247,54018485,87403766,141422286 %N A168043 Let S(1)={1} and, for n>1 let S(n) be the smallest set containing x+1, x+2, and 2*x for each element x in S(n-1). a(n) is the number of elements in S(n). %F A168043 It appears that a(n) = a(n-1) + a(n-2) + n - 3, for n>3. %F A168043 From _R. J. Mathar_, Nov 18 2009: (Start) %F A168043 Apparently: a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) for n>5; %F A168043 and a(n) = A000032(n+1) - n for n>1. (End) %F A168043 From _Ilya Gutkovskiy_, Jul 07 2016: (Start) %F A168043 It appears that the g.f. is x*(1 - x + x^4)/((1 - x)^2*(1 - x - x^2)); and the e.g.f. is phi*exp(phi*x) - exp(-x/phi)/phi - x*(1 + exp(x)) - 1, where phi is the golden ratio. (End) %F A168043 It would be nice to have a proof for any one of these formulas. The others would then presumably follow easily. - _N. J. A. Sloane_, Jul 11 2016 %e A168043 Under the indicated set mapping we have {1} -> {2,3} -> {3,4,5,6} -> {4,5,6,7,8,10,12}, ..., so a(2)=2, a(3)=4, a(4)=7, etc. %o A168043 (Python) %o A168043 from itertools import chain, islice %o A168043 def agen(): # generator of terms %o A168043 s = {1} %o A168043 while True: %o A168043 yield len(s) %o A168043 s = set(chain.from_iterable((x+1, x+2, 2*x) for x in s)) %o A168043 print(list(islice(agen(), 30))) # _Michael S. Branicky_, Jan 13 2022 after _Chai Wah Wu_ in A123247 %Y A168043 Cf. A000032, A122554. %K A168043 nonn %O A168043 1,2 %A A168043 _John W. Layman_, Nov 17 2009 %E A168043 a(17)-a(22) from _R. J. Mathar_, Nov 18 2009 %E A168043 a(23)-a(35) from _Jinyuan Wang_, Apr 14 2020 %E A168043 a(36)-a(38) from _Michael S. Branicky_, Jan 13 2022