A168140 Sum of n-th numerator and n-th denominator in triangle formed from Bernoulli numbers.
2, 3, 3, 7, 4, 7, 1, 7, 7, 1, 29, 31, 17, 31, 29, 1, 29, 16, 16, 29, 1, 43, 41, 104, 113, 104, 41, 43, 1, 43, 20, 109, 109, 20, 43, 1, 29, 31, 104, 101, 113, 101, 104, 31, 29, 1, 29, 16, 97, 109, 109, 97, 16, 29, 1, 71, 61, 172, 169, 1039, 263, 1039, 169, 172, 61, 71, 1, 71, 28, 197, 137, 247, 247, 137, 197, 28, 71, 1
Offset: 0
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Maple
b := proc(n, k) option remember; if k = 0 then (-1)^n*bernoulli(n) ; elif k > n/2 then procname(n, n-k) ; else procname(n-1, k-1)-procname(n, k-1) ; end if; end proc: T := proc(n, k) numer(b(n, k))+denom(b(n, k)) ; end proc: seq(seq(T(n,k), k=0..n), n=0..10); # R. J. Mathar, Apr 14 2010
-
Mathematica
b[n_, 0] := (-1)^n BernoulliB[n]; b[n_, k_] := b[n, k] = b[n - 1, k - 1] - b[n, k - 1]; T[n_, k_] := Numerator[b[n, k]] + Denominator[b[n, k]]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 21 2020 *)
Extensions
A 109 duplicated, 1049 replaced with 1039 by R. J. Mathar, Apr 14 2010
Comments