This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168141 #32 Jan 19 2025 11:04:14 %S A168141 1,2,2,2,1,2,1,1,0,1,1,2,1,1,0,1,1,2,1,1,0,1,1,1,0,0,0,1,1,2,1,1,0,0, %T A168141 0,1,1,1,0,1,1,2,1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,1,1,2,1,1,0,0,0,1,1,1, %U A168141 0,1,1,2,1,1,0,0,0,1,1,1,0,1,1,1,0,0,0,1,1,1,0,0,0,0,0,1,1,1,0,1,1,2,1,1,0 %N A168141 a(n) = pi(n + 1) - pi(n - 2), where pi is the prime counting function. %C A168141 Conjecture: a(n) = 2 for infinitely many n. This is equivalent to the twin prime conjecture. - _Andrew Slattery_, Apr 26 2020 %H A168141 Antti Karttunen, <a href="/A168141/b168141.txt">Table of n, a(n) for n = 1..20000</a> %H A168141 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/TwinPrimeConjecture.html">Twin Prime Conjecture</a> %H A168141 Wikipedia, <a href="https://en.wikipedia.org/wiki/Twin_prime#Other_theorems_weaker_than_the_twin_prime_conjecture">Twin prime</a> %F A168141 From _Alois P. Heinz_, Apr 28 2020: (Start) %F A168141 a(n) = 2 <=> n in { 2,3 } union { A014574 }. %F A168141 a(n) = 0 <=> n in A079364. (End) %p A168141 A168141 := proc(n) numtheory[pi](n+1)-numtheory[pi](n-2) ; end proc: seq(A168141(n),n=1..120) ; # _R. J. Mathar_, Nov 19 2009 %p A168141 # second Maple program: %p A168141 a:= n-> add(`if`(isprime(n+i), 1, 0), i=-1..1): %p A168141 seq(a(n), n=1..120); # _Alois P. Heinz_, Apr 28 2020 %t A168141 Table[PrimePi[n + 1] - PrimePi[n - 2], {n, 100}] (* _Wesley Ivan Hurt_, Apr 26 2020 *) %o A168141 (PARI) a(n) = primepi(n+1) - primepi(n-2); \\ _Michel Marcus_, Apr 27 2020 %Y A168141 Cf. A000720, A014574, A079364, A090406. %K A168141 nonn %O A168141 1,2 %A A168141 _Juri-Stepan Gerasimov_, Nov 19 2009