A168155 Sum of binary digits of all primes < 2^n, i.e., with at most n binary digits.
0, 3, 8, 14, 32, 61, 117, 230, 470, 922, 1807, 3597, 7071, 14022, 27693, 54876, 109077, 216301, 430183, 854696, 1700412, 3382868, 6733230, 13404811, 26704639, 53204936, 106034897, 211377718, 421466683, 840573072, 1676670824, 3345012214, 6674425203, 13319553281
Offset: 1
Examples
No prime can be written with only 1 binary digit, thus a(1)=0. The primes that can be written with 2 binary digits are 2 = 10[2] and 3 = 11[2], they have 3 nonzero bits, so a(2)=3. Primes with 3 binary digits are 5 = 101[2] and 7 = 111[3]. They add 5 more nonzero bits to yield a(3) = a(2)+5 = 8.
Crossrefs
Cf. A168153.
Programs
-
PARI
s=0; L=p=2; while( L*=2, print1(s", "); until( L
Extensions
a(25)-a(32) from Donovan Johnson, Jul 28 2010
a(33) from Chai Wah Wu, Apr 06 2020
a(34) from Chai Wah Wu, Apr 07 2020
Comments