A168159 Distance of the least reversible n-digit prime from 10^(n-1).
1, 1, 1, 9, 7, 49, 33, 169, 7, 7, 207, 237, 91, 313, 261, 273, 79, 49, 2901, 51, 441, 193, 9, 531, 289, 1141, 67, 909, 331, 753, 2613, 657, 49, 4459, 603, 1531, 849, 2049, 259, 649, 2119, 1483, 63, 6747, 519, 3133, 937, 1159, 1999, 6921, 2949, 613, 4137, 1977, 31
Offset: 1
Links
- Michael S. Branicky, Table of n, a(n) for n = 1..500
Programs
-
Mathematica
Table[p = NextPrime[y = 10^(n - 1)]; While[! PrimeQ[FromDigits[Reverse[IntegerDigits[p]]]], p = NextPrime[p]]; p - y, {n, 55}] (* Jayanta Basu, Aug 09 2013 *)
-
PARI
for(x=1,1e99, until( isprime(x=nextprime(x+1)) & isprime(eval(concat(vecextract(Vec(Str(x)),"-1..1")))),);print1(x-10^ (#Str(x)-1),", "); x=10^#Str(x)-1)
-
Python
from sympy import isprime def c(n): return isprime(n) and isprime(int(str(n)[::-1])) def a(n): return next(p-10**(n-1) for p in range(10**(n-1), 10**n) if c(p)) print([a(n) for n in range(1, 56)]) # Michael S. Branicky, Jun 27 2022
Formula
a(n)=A114018(n)-10^(n-1)
Comments