cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168159 Distance of the least reversible n-digit prime from 10^(n-1).

Original entry on oeis.org

1, 1, 1, 9, 7, 49, 33, 169, 7, 7, 207, 237, 91, 313, 261, 273, 79, 49, 2901, 51, 441, 193, 9, 531, 289, 1141, 67, 909, 331, 753, 2613, 657, 49, 4459, 603, 1531, 849, 2049, 259, 649, 2119, 1483, 63, 6747, 519, 3133, 937, 1159, 1999, 6921, 2949, 613, 4137, 1977, 31
Offset: 1

Views

Author

M. F. Hasler, Nov 21 2009

Keywords

Comments

A (much) more compact form of A114018 (cf. formula). Since this sequence and A114018 refer to "reversible primes" (A007500), while A122490 seems to use "emirps" (A006567), a(n+1) differs from A122490(n) iff 10^n+1 is prime <=> a(n+1)=1 <=> A114018(n)=10^n+1.

Programs

  • Mathematica
    Table[p = NextPrime[y = 10^(n - 1)]; While[! PrimeQ[FromDigits[Reverse[IntegerDigits[p]]]], p = NextPrime[p]]; p - y, {n, 55}] (* Jayanta Basu, Aug 09 2013 *)
  • PARI
    for(x=1,1e99, until( isprime(x=nextprime(x+1)) & isprime(eval(concat(vecextract(Vec(Str(x)),"-1..1")))),);print1(x-10^ (#Str(x)-1),", "); x=10^#Str(x)-1)
    
  • Python
    from sympy import isprime
    def c(n): return isprime(n) and isprime(int(str(n)[::-1]))
    def a(n): return next(p-10**(n-1) for p in range(10**(n-1), 10**n) if c(p))
    print([a(n) for n in range(1, 56)]) # Michael S. Branicky, Jun 27 2022

Formula

a(n)=A114018(n)-10^(n-1)