cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168160 Number of 0's in the matrix whose lines are the binary expansion of the numbers 1,...,n.

This page as a plain text file.
%I A168160 #17 Jan 17 2025 07:10:56
%S A168160 0,2,2,7,8,9,9,19,21,23,24,26,27,28,28,47,50,53,55,58,60,62,63,66,68,
%T A168160 70,71,73,74,75,75,111,115,119,122,126,129,132,134,138,141,144,146,
%U A168160 149,151,153,154,158,161,164,166,169,171,173,174,177,179,181,182,184,185,186
%N A168160 Number of 0's in the matrix whose lines are the binary expansion of the numbers 1,...,n.
%C A168160 The matrix is to be taken of minimal size, i.e., have n lines and the number of columns needed to write n in base 2 in the last line, A070939(n). Otherwise said, there is no zero column.
%C A168160 The number of zeros in the last line of the matrix is given by A023416(n).
%C A168160 One has a(n)=a(n-1) iff n = 2^k-1 for some k.
%H A168160 Paolo Xausa, <a href="/A168160/b168160.txt">Table of n, a(n) for n = 1..10000</a>
%F A168160 a(n) = n*A070939(n) - A000788(n) = A380230(n) - A000788(n).
%e A168160 a(4)=7 is the number of zeros in the matrix
%e A168160 [001] /* = 1 in binary */
%e A168160 [010] /* = 2 in binary */
%e A168160 [011] /* = 3 in binary */
%e A168160 [100] /* = 4 in binary */
%t A168160 #*BitLength[#] - Accumulate[DigitCount[#, 2, 1]] & [Range[100]] (* _Paolo Xausa_, Jan 17 2025 *)
%o A168160 (PARI) A168160(n)=n*#binary(n)-sum(i=1,n,norml2(binary(i)))
%o A168160 (Python)
%o A168160 def A168160(n): return n*(a:=n.bit_length())-(n+1)*n.bit_count()-(sum((m:=1<<j)*((k:=n>>j)-(r if n<<1>=m*(r:=k<<1|1) else 0)) for j in range(1,a+1))>>1) # _Chai Wah Wu_, Nov 11 2024
%Y A168160 Cf. A000788, A070939, A023416, A059015, A380230.
%K A168160 base,nonn
%O A168160 1,2
%A A168160 _M. F. Hasler_, Nov 22 2009