This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168167 #11 Nov 12 2020 05:18:02 %S A168167 1373,3137,3797,5237,6173,11317,11373,13733,13739,13797,17331,19739, %T A168167 19973,21137,21317,21373,21379,22397,22937,23117,23137,23173,23371, %U A168167 23373,23719,23797,23971,24373,26173,26317,27193,27197,29173,29537 %N A168167 Numbers with d digits (d>0) which have at least 2d distinct primes as substrings. %C A168167 "Substrings" includes the whole number in itself. %C A168167 The terms up to 11317 are primes themselves. The subsequence A168169 lists primes which have more than 2d prime substrings. %C A168167 From _Robert Israel_, Nov 11 2020: (Start) %C A168167 Palindromes in the sequence include 1337331, 1375731, and 1793971. %C A168167 Even numbers in the sequence include 313732, 313792 and 1131712. (End) %H A168167 Robert Israel, <a href="/A168167/b168167.txt">Table of n, a(n) for n = 1..2500</a> %e A168167 The least number with d digits to have 2d distinct prime substrings is a(1)=1373, with 4 digits and #{3, 7, 13, 37, 73, 137, 373, 1373} = 8. %p A168167 filter:= proc(n) local i,j,count,d,S,x,y; %p A168167 d:= ilog10(n)+1; %p A168167 count:= 0; S:= {}; %p A168167 for i from 0 to d-1 do %p A168167 x:= floor(n/10^i); %p A168167 for j from i to d-1 do %p A168167 y:= x mod 10^(j-i+1); %p A168167 if not member(y,S) and isprime(y) then count:= count+1; S:= S union {y}; if count = 2*d then return true fi fi %p A168167 od od; %p A168167 false %p A168167 end proc: %p A168167 select(filter, [$10..10^5]); # _Robert Israel_, Nov 11 2020 %o A168167 (PARI) {for( p=1, 1e6, #prime_substrings(p) >= #Str(p)*2 & print1(p", "))} /* see A168168 for prime_substrings() */ %Y A168167 Cf. A069490, A131648, A012884, A168168, A168169. %K A168167 nonn,base %O A168167 1,1 %A A168167 _M. F. Hasler_, Nov 28 2009