This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168168 #8 Apr 03 2023 10:36:11 %S A168168 373,11311,17971,37273,37573,39293,71317,93739,97379,1193911,1317131, %T A168168 1371731,1793971,3166613,3319133,3337333,3479743,3716173,3722273, %U A168168 3763673,3769673,3774773,3792973,3793973,3799973,3916193,7118117 %N A168168 Palindromic primes with d digits which have more than 3*d/2 distinct primes as substrings, for any d > 0. %C A168168 The prime itself and its prime digits are counted among the prime substrings. %H A168168 C. Caldwell, G.L. Honaker (Editors), <a href="https://t5k.org/curios/page.php?short=13151715131">Prime curios!: 13151715131</a>, by _M. F. Hasler_, Nov. 2009. %e A168168 The prime 13151715131 is in the sequence since it is palindromic, of length 11, and contains the following 17 > 11*3/2 distinct primes as substrings: 3, 5, 7, 13, 17, 31, 71, 131, 151, 5171, 7151, 13151, 15131, 31517, 517151, 1315171513 and 13151715131. %o A168168 (PARI) prime_substrings(p) = { p=Vec(Str(p)); select( x->isprime(x), vecsort( concat( vector( #p,i, vector( i,j, eval( concat( vecextract( p, Str(j".."i))))))),8))} /* Note: In PARI version 2.4.2 (dvt CHANGES-1.1971), the syntax is select(L,f) instead of select(f,L). */ %o A168168 {forprime( p=2,default(primelimit), p==eval(concat(vecextract(Vec(Str(p)),"-1..1")))|next; #prime_substrings(p) > #Str(p)*3\2 & print1(p", "))} %K A168168 base,nonn %O A168168 1,1 %A A168168 _M. F. Hasler_, Nov 23 2009