cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168171 Least prime p = 1 (mod n) which divides Fibonacci((p-1)/n).

Original entry on oeis.org

11, 29, 139, 61, 211, 541, 2269, 89, 199, 281, 859, 661, 911, 2269, 2221, 2081, 2789, 2161, 3041, 421, 2521, 19009, 21529, 3001, 9901, 5981, 2161, 2269, 26449, 2221, 31249, 19681, 17491, 2789, 3571, 25309, 30859, 3041, 6709, 3001, 9349, 2521, 13159, 19009
Offset: 1

Views

Author

M. F. Hasler, Nov 25 2009

Keywords

Examples

			For n=1, all numbers p satisfy p=1 (mod n), but p=11 is the least prime that divides F((p-1)/1)=F(p-1)=F(10)=55.
For n=2, all odd numbers, thus all primes p>2, satisfy p=1 (mod n), but p=29 is the first one to divide F((p-1)/2) = F(14) = 377 = 13*29.
For n=5, a(n)=211 is the smallest Artiad, i.e. prime p=1 (mod 5) which divides F((p-1)/5) = F(42) = 211*1269736.
		

Crossrefs

Cf. A122487 (p | F[(p+1)/2]), A047652 (p | F[(p-1)/3]), A001583 (Artiads: p | F[(p-1)/5]), A125252 (p | F[(p+1)/7]), A125253 (p | F[(p-1)/7]).

Programs

  • Mathematica
    a[1] = 11;
    a[n_] := For[p = 1, True, p = p + n, If[PrimeQ[p] && Divisible[Fibonacci[(p - 1)/n], p], Return[p]]];
    a /@ Range[100] (* Jean-François Alcover, Oct 14 2019 *)
  • PARI
    for(n=1,99,forprime(p=1,oo,(p-1)%n & next; fibonacci((p-1)/n)%p || print1(p, ", ") || next(2)))