cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168175 Expansion of 1/(1 - 4*x + 7*x^2).

This page as a plain text file.
%I A168175 #50 Mar 17 2024 02:14:13
%S A168175 1,4,9,8,-31,-180,-503,-752,513,7316,25673,51480,26209,-255524,
%T A168175 -1205559,-3033568,-3695359,6453540,51681673,161551912,284435937,
%U A168175 6880364,-1963530103,-7902282960,-17864421119,-16141703756,60484132809
%N A168175 Expansion of 1/(1 - 4*x + 7*x^2).
%C A168175 Also the coefficient of i of Q^(n+1), Q being the quaternion 2+i+j+k. The real part of the quaternion power is A213421, see also A087455, A088138, A128018. - _Stanislav Sykora_, Jun 11 2012
%C A168175 a(n)*(-1)^n gives the coefficient c(7^n) of (eta(z^6))^4, a modular cusp form of weight 2, when expanded in powers of q = exp(2*Pi*i*z), Im(z) > 0, assuming alpha-multiplicativity (but not for primes 2 and 3) with alpha(x) = x (weight 2) and input c(7) = -4. Eta is the Dedekind function. See the Apostol reference, p. 138, eq. (54) for alpha-multiplicativity and p. 130, eq. (39) with k=2. See also A000727(n) = b(n) where c(7^n) = b((7^n-1)/6) = b(A023000(n)), n >= 0. Proof: The alpha-multiplicity with alpha(1) = 1 and c(1) = 1 leads from p^n = p^(n-1)*p to the recurrence c_n = c*c_(n-1) - a*c(n-2), with c_n = c(p^n), c = c(p) and a = alpha(p). Inputs are c_{-1} = 0 and c_0 = c(1) = 1. This gives the polynomial c_n = sqrt(a)^n * S(n,c/sqrt(a)), with Chebyshev's S-polynomials (A049310). See the Apostol reference, Exercise 6., p. 139. Here p = 7, c = -4. - _Wolfdieter Lang_, Apr 27 2016
%D A168175 Tom M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990, pp. 130, 138 - 139.
%H A168175 Vincenzo Librandi, <a href="/A168175/b168175.txt">Table of n, a(n) for n = 0..1000</a>
%H A168175 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,-7).
%H A168175 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%F A168175 a(n) = (1/2 - i/sqrt(3))*(2 + i*sqrt(3))^n + (1/2 + i/sqrt(3))*(2 - i*sqrt(3))^n (Binet formula), where i is the imaginary unit.
%F A168175 a(n) = 4*a(n-1) - 7*a(n-2).
%F A168175 a(n) = sqrt(7)^n * S(n, 4/sqrt(7)), n >= 0, with Chebyshev's S polynomials (A049310). - _Wolfdieter Lang_, Apr 27 2016
%F A168175 E.g.f.: (2*sqrt(3)*sin(sqrt(3)*x) + 3*cos(sqrt(3)*x))*exp(2*x)/3. - _Ilya Gutkovskiy_, Apr 27 2016
%F A168175 a(n) = (-1) * 7^(n+1) * a(-2-n) for all n in Z. - _Michael Somos_, Feb 23 2020
%e A168175 G.f. = 1 + 4*x + 9*x^2 + 8*x^3 - 31*x^4 - 180*x^5 - 503*x^6 - 752*x^7 + ... - _Michael Somos_, Feb 23 2020
%t A168175 CoefficientList[Series[1/(1-4x+7x^2),{x,0,30}],x] (* or *) LinearRecurrence[ {4,-7},{1,4},30] (* _Harvey P. Dale_, Nov 28 2014 *)
%o A168175 (Magma) I:=[1,4]; [n le 2 select I[n] else 4*Self(n-1)-7*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Jun 25 2012
%o A168175 (PARI) {a(n) = my(s=1, t=1); if( n<0, n=-2-n; s=-1; t=1/7); s * t^(n+1) * polcoeff(1 / (1 - 4*x + 7*x^2) + x * O(x^n), n)}; /* _Michael Somos_, Feb 23 2020 */
%Y A168175 Cf. A023000, A049310.
%K A168175 sign,easy
%O A168175 0,2
%A A168175 _Roger L. Bagula_, Nov 19 2009