cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168181 Characteristic function of numbers that are not multiples of 8.

This page as a plain text file.
%I A168181 #37 Jul 10 2022 03:58:07
%S A168181 0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,
%T A168181 1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,
%U A168181 1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0
%N A168181 Characteristic function of numbers that are not multiples of 8.
%C A168181 Multiplicative with a(p^e) = (if p=2 then A019590(e) else 1), p prime and e>0.
%C A168181 Period 8 Repeat: [0, 1, 1, 1, 1, 1, 1, 1]. - _Wesley Ivan Hurt_, Jun 21 2014
%H A168181 Antti Karttunen, <a href="/A168181/b168181.txt">Table of n, a(n) for n = 0..16384</a>
%H A168181 <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>
%H A168181 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,1).
%F A168181 a(n+8) = a(n);
%F A168181 a(n) = A000007(A010877(n));
%F A168181 a(A047592(n)) = 1; a(A008590(n)) = 0;
%F A168181 A033440(n) = Sum_{k=0..n} a(k)*(n-k).
%F A168181 Dirichlet g.f. (1-1/8^s)*zeta(s). - _R. J. Mathar_, Feb 19 2011
%F A168181 For the general case: the characteristic function of numbers that are not multiples of m is a(n) = floor((n-1)/m) - floor(n/m) + 1, m,n > 0. - _Boris Putievskiy_, May 08 2013
%F A168181 a(n) = sign(n mod 8). - _Wesley Ivan Hurt_, Jun 21 2014
%F A168181 a(n) = sign( 1 - floor(cos(Pi*n/4)) ). - _Wesley Ivan Hurt_, Jun 21 2014
%F A168181 Euler transform of length 8 sequence [ 1, 0, 0, 0, 0, 0, -1, 1]. - _Michael Somos_, Jun 24 2014
%F A168181 Moebius transform is length 8 sequence [ 1, 0, 0, 0, 0, 0, 0, -1]. - _Michael Somos_, Jun 24 2014
%F A168181 G.f.: x * (1 - x^7) / ((1 - x) * (1 - x^8)). - _Michael Somos_, Jun 24 2014
%F A168181 a(n) = 1-A253513(n). - _Antti Karttunen_, Oct 08 2017
%e A168181 G.f. = x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^9 + x^10 + x^11 + ...
%p A168181 with(numtheory); A168181:=n->signum(n mod 8); seq(A168181(n), n=0..100); # _Wesley Ivan Hurt_, Jun 21 2014
%t A168181 Table[Sign[Mod[n,8]], {n, 0, 100}] (* _Wesley Ivan Hurt_, Jun 21 2014 *)
%o A168181 (Magma) [Sign(n mod 8) : n in [0..100]]; // _Wesley Ivan Hurt_, Jun 21 2014
%o A168181 (PARI) a(n)=n%8 > 0 \\ _Felix Fröhlich_, Aug 11 2014
%o A168181 (Python)
%o A168181 def A168181(n): return int(bool(n&7)) # _Chai Wah Wu_, Jul 09 2022
%Y A168181 Cf. A168185, A145568, A168184, A168182, A109720, A097325, A011558, A166486, A011655, A000035, A010877, A244413, A253513.
%K A168181 mult,nonn,easy
%O A168181 0,1
%A A168181 _Reinhard Zumkeller_, Nov 30 2009