cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168182 Characteristic function of numbers that are not multiples of 9.

This page as a plain text file.
%I A168182 #44 Mar 05 2025 18:15:26
%S A168182 0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,
%T A168182 1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,
%U A168182 1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,0,1,1,1,1,1
%N A168182 Characteristic function of numbers that are not multiples of 9.
%H A168182 Antti Karttunen, <a href="/A168182/b168182.txt">Table of n, a(n) for n = 0..999</a>
%H A168182 Michael Somos, <a href="http://grail.eecs.csuohio.edu/~somos/rfmc.txt">Rational Function Multiplicative Coefficients</a>
%H A168182 <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>
%H A168182 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,1).
%F A168182 Euler transform of length 9 sequence [1, 0, 0, 0, 0, 0, 0, -1, 1]. - _Michael Somos_, Mar 22 2011
%F A168182 Moebius transform is length 9 sequence [1, 0, 0, 0, 0, 0, 0, 0, -1]. - _Michael Somos_, Mar 22 2011
%F A168182 Expansion of x * (1 - x^8) / ((1 - x) * (1 - x^9)) in powers of x. - _Michael Somos_, Mar 22 2011
%F A168182 Multiplicative with a(p^e) = (if p=3 then 0^(e-1) else 1), p prime and e>0.
%F A168182 a(n) = a(n+9) = a(-n) for all n in Z.
%F A168182 a(n) = A000007(A010878(n)).
%F A168182 a(A168183(n)) = 1. a(A008591(n)) = 0.
%F A168182 A033441(n) = Sum_{k=0..n} a(k)*(n-k).
%F A168182 G.f.: -x*(1+x)*(1+x^2)*(1+x^4) / ( (x-1)*(1+x+x^2)*(x^6+x^3+1) ). - _R. J. Mathar_, Jan 07 2011
%F A168182 Dirichlet g.f. (1-3^(-2s))*zeta(s). - _R. J. Mathar_, Mar 06 2011
%F A168182 For the general case: the characteristic function of numbers that are not multiples of m is a(n)=floor((n-1)/m)-floor(n/m)+1, m,n > 0. - _Boris Putievskiy_, May 08 2013
%F A168182 a(n) = 1 - A267142(n). - _Antti Karttunen_, Oct 07 2017
%e A168182 G.f. = x + x^2 + x^3 + x^4 + x^5 + x^6 + x^7 + x^8 + x^10 + x^11 + x^12 + x^13 + ...
%t A168182 A168182[n_]:=Boole[!Divisible[n,9]]; Array[A168182, 10, 0]
%t A168182 Table[If[Mod[n,9]==0,0,1],{n,0,120}] (* _Harvey P. Dale_, Mar 05 2025 *)
%o A168182 (PARI) {a(n) = sign(n%9)}; /* _Michael Somos_, Mar 22 2011 */
%Y A168182 Cf. A168185, A145568, A168184, A168181, A109720, A097325, A011558, A166486, A011655, A000035, A267142, A033441.
%K A168182 easy,mult,nonn
%O A168182 0,1
%A A168182 _Reinhard Zumkeller_, Nov 30 2009