cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168184 Characteristic function of numbers that are not multiples of 10.

This page as a plain text file.
%I A168184 #32 Jun 03 2023 10:46:15
%S A168184 0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,
%T A168184 1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,
%U A168184 1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,0,1,1,1,1
%N A168184 Characteristic function of numbers that are not multiples of 10.
%H A168184 Reinhard Zumkeller, <a href="/A168184/b168184.txt">Table of n, a(n) for n = 0..1000</a>
%H A168184 <a href="/index/Ch#char_fns">Index entries for characteristic functions</a>
%H A168184 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,1).
%F A168184 a(n+10) = a(n);
%F A168184 a(n) = A000007(A010879(n));
%F A168184 a(A067251(n)) = 1; a(A008592(n)) = 0;
%F A168184 not the same as A168046: a(n)=A168046 for n<=100;
%F A168184 A033442(n) = Sum_{k=0..n} a(k)*(n-k).
%F A168184 Dirichlet g.f.: (1-1/10^s)*zeta(s). - _R. J. Mathar_, Feb 19 2011
%F A168184 For the general case: the characteristic function of numbers that are not multiples of m is a(n)=floor((n-1)/m)-floor(n/m)+1, m,n > 0. - _Boris Putievskiy_, May 08 2013
%t A168184 Table[If[Mod[n,10]==0,0,1],{n,0,110}] (* or *) PadRight[{},110,{0,1,1,1,1,1,1,1,1,1}] (* _Harvey P. Dale_, Jun 03 2023 *)
%o A168184 (Haskell)
%o A168184 a168184 = (1 -) . (0 ^) . (`mod` 10)
%o A168184 a168184_list = cycle [0,1,1,1,1,1,1,1,1,1]
%o A168184 -- _Reinhard Zumkeller_, Oct 10 2012
%o A168184 (PARI) a(n)=n%10>0 \\ _Charles R Greathouse IV_, Sep 24 2015
%Y A168184 Cf. A168185, A145568, A168182, A168181, A109720, A097325, A011558, A166486, A011655, A000035, A010690, A033442.
%K A168184 nonn,easy
%O A168184 0,1
%A A168184 _Reinhard Zumkeller_, Nov 30 2009