cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168218 Decimal expansion of the Sum_{k=2..infinity} 1/(k^2*log(k)).

Original entry on oeis.org

6, 0, 5, 5, 2, 1, 7, 8, 8, 8, 8, 2, 6, 0, 0, 4, 4, 7, 6, 9, 9, 5, 4, 9, 0, 0, 5, 2, 0, 7, 2, 4, 0, 4, 4, 7, 3, 0, 3, 2, 3, 8, 8, 9, 8, 4, 5, 5, 0, 6, 5, 7, 8, 3, 3, 1, 1, 1, 4, 7, 5, 9, 0, 4, 2, 0, 6, 8, 9, 4, 1, 1, 9, 7, 8, 0, 8, 8, 6, 8, 1, 7, 6, 1, 1, 8, 3, 1, 2, 8, 4, 1, 9, 3, 0, 8, 9, 4, 0, 1, 9, 8, 6, 9, 9
Offset: 0

Views

Author

R. J. Mathar, Nov 20 2009

Keywords

Comments

Also the value of the integral of the fractional part of the Riemann zeta function from 2 to infinity. - Alexander Bock, Apr 01 2014

Examples

			equals 1/(4*log(2))+1/(9*log(3))+1/(16*log(4))+ .... + = 0.605521788882600447699549005207240447303238898..
		

Crossrefs

Programs

  • Mathematica
    (* Computation needs a few minutes for 105 digits *) digits = 105; NSum[ 1/(n^2*Log[n]), {n, 2, Infinity}, NSumTerms -> 500000, WorkingPrecision -> digits + 5, Method -> {"EulerMaclaurin", Method -> {"NIntegrate", "MaxRecursion" -> 12}}] // RealDigits[#, 10, digits] & // First (* Jean-François Alcover, Feb 11 2013 *)
    RealDigits[NIntegrate[Zeta[x] - 1, {x, 2, Infinity}, WorkingPrecision->110], 10, 100] (* Alexander Bock, Apr 01 2014 *)
  • PARI
    intnum(x=2,[oo,log(2)],zeta(x)-1) \\ Charles R Greathouse IV, Apr 01 2014
    
  • PARI
    suminf(k=2,1/k^2/log(k)) \\ Charles R Greathouse IV, Apr 01 2014

Formula

Equals Integral_{x>=2} (zeta(x) - 1) dx.

Extensions

More terms from Jean-François Alcover, Feb 11 2013