cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168258 Triangle read by rows, A101688 * A000012 as infinite lower triangular matrices.

This page as a plain text file.
%I A168258 #23 Nov 17 2022 04:47:31
%S A168258 1,1,1,2,2,1,2,2,2,1,3,3,3,2,1,3,3,3,3,2,1,4,4,4,4,3,2,1,4,4,4,4,4,3,
%T A168258 2,1,5,5,5,5,5,4,3,2,1,5,5,5,5,5,5,4,3,2,1,6,6,6,6,6,6,5,4,3,2,1,6,6,
%U A168258 6,6,6,6,6,5,4,3,2,1
%N A168258 Triangle read by rows, A101688 * A000012 as infinite lower triangular matrices.
%C A168258 Row sums = A001318, general pentagonal numbers: (1, 2, 5, 12, 15, 22, ...).
%C A168258 Eigensequence of the triangle = A168259: (1, 2, 6, 14, 38, 96, 254, 656, ...).
%C A168258 The operation A101688 * A000012 transforms rows of A101688 into sequence terms by taking partial sums from the right of A101688 rows. For example, row 3 of A101688 (0, 0, 1, 1) becomes (2, 2, 2, 1). - _Gary W. Adamson_, Nov 15 2022
%F A168258 Triangle read by rows, A101688 * A000012 as infinite lower triangular matrices.
%F A168258 a(n) = min(A004736, A204164); a(n) = min(j, floor((t+2)/2)), where j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - _Boris Putievskiy_, Apr 18 2013
%e A168258 First few rows of the triangle:
%e A168258   1;
%e A168258   1, 1;
%e A168258   2, 2, 1;
%e A168258   2, 2, 2, 1;
%e A168258   3, 3, 3, 2, 1;
%e A168258   3, 3, 3, 3, 2, 1;
%e A168258   4, 4, 4, 4, 3, 2, 1;
%e A168258   4, 4, 4, 4, 4, 3, 2, 1;
%e A168258   5, 5, 5, 5, 5, 4, 3, 2, 1;
%e A168258   5, 5, 5, 5, 5, 5, 4, 3, 2, 1;
%e A168258   6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 1;
%e A168258   6, 6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 1;
%e A168258   7, 7, 7, 7, 7, 7, 7, 6, 5, 4, 3, 2, 1;
%e A168258   7, 7, 7, 7, 7, 7, 7, 7, 6, 5, 4, 3, 2, 1;
%e A168258   8, 8, 8, 8, 8, 8, 8, 8, 7, 6, 5, 4, 3, 2, 1;
%e A168258   ...
%o A168258 (PARI) T(n, k) = if(binomial(k, n-k)>0, 1, 0); \\ A101688
%o A168258 lista(nn) = my(ma=matrix(nn+1, nn, n, k, T(n-1, k-1)), mb=matrix(nn, nn, n, k, n>=k)); my(m=ma*mb, list=List()); for (n=1, nn, listput(list, vector(n, k, m[n,k]))); Vec(list); \\ _Michel Marcus_, Nov 16 2022
%Y A168258 Cf. A001318, A101688, A000012, A168259, A004736, A204164.
%K A168258 nonn,tabl
%O A168258 1,4
%A A168258 _Gary W. Adamson_, Nov 21 2009
%E A168258 Name corrected by _Gary W. Adamson_, Nov 15 2022