This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168258 #23 Nov 17 2022 04:47:31 %S A168258 1,1,1,2,2,1,2,2,2,1,3,3,3,2,1,3,3,3,3,2,1,4,4,4,4,3,2,1,4,4,4,4,4,3, %T A168258 2,1,5,5,5,5,5,4,3,2,1,5,5,5,5,5,5,4,3,2,1,6,6,6,6,6,6,5,4,3,2,1,6,6, %U A168258 6,6,6,6,6,5,4,3,2,1 %N A168258 Triangle read by rows, A101688 * A000012 as infinite lower triangular matrices. %C A168258 Row sums = A001318, general pentagonal numbers: (1, 2, 5, 12, 15, 22, ...). %C A168258 Eigensequence of the triangle = A168259: (1, 2, 6, 14, 38, 96, 254, 656, ...). %C A168258 The operation A101688 * A000012 transforms rows of A101688 into sequence terms by taking partial sums from the right of A101688 rows. For example, row 3 of A101688 (0, 0, 1, 1) becomes (2, 2, 2, 1). - _Gary W. Adamson_, Nov 15 2022 %F A168258 Triangle read by rows, A101688 * A000012 as infinite lower triangular matrices. %F A168258 a(n) = min(A004736, A204164); a(n) = min(j, floor((t+2)/2)), where j=(t*t+3*t+4)/2-n, t=floor((-1+sqrt(8*n-7))/2). - _Boris Putievskiy_, Apr 18 2013 %e A168258 First few rows of the triangle: %e A168258 1; %e A168258 1, 1; %e A168258 2, 2, 1; %e A168258 2, 2, 2, 1; %e A168258 3, 3, 3, 2, 1; %e A168258 3, 3, 3, 3, 2, 1; %e A168258 4, 4, 4, 4, 3, 2, 1; %e A168258 4, 4, 4, 4, 4, 3, 2, 1; %e A168258 5, 5, 5, 5, 5, 4, 3, 2, 1; %e A168258 5, 5, 5, 5, 5, 5, 4, 3, 2, 1; %e A168258 6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 1; %e A168258 6, 6, 6, 6, 6, 6, 6, 5, 4, 3, 2, 1; %e A168258 7, 7, 7, 7, 7, 7, 7, 6, 5, 4, 3, 2, 1; %e A168258 7, 7, 7, 7, 7, 7, 7, 7, 6, 5, 4, 3, 2, 1; %e A168258 8, 8, 8, 8, 8, 8, 8, 8, 7, 6, 5, 4, 3, 2, 1; %e A168258 ... %o A168258 (PARI) T(n, k) = if(binomial(k, n-k)>0, 1, 0); \\ A101688 %o A168258 lista(nn) = my(ma=matrix(nn+1, nn, n, k, T(n-1, k-1)), mb=matrix(nn, nn, n, k, n>=k)); my(m=ma*mb, list=List()); for (n=1, nn, listput(list, vector(n, k, m[n,k]))); Vec(list); \\ _Michel Marcus_, Nov 16 2022 %Y A168258 Cf. A001318, A101688, A000012, A168259, A004736, A204164. %K A168258 nonn,tabl %O A168258 1,4 %A A168258 _Gary W. Adamson_, Nov 21 2009 %E A168258 Name corrected by _Gary W. Adamson_, Nov 15 2022