cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168277 a(n) = 2*n - (-1)^n - 2.

This page as a plain text file.
%I A168277 #40 Aug 21 2022 04:40:59
%S A168277 1,1,5,5,9,9,13,13,17,17,21,21,25,25,29,29,33,33,37,37,41,41,45,45,49,
%T A168277 49,53,53,57,57,61,61,65,65,69,69,73,73,77,77,81,81,85,85,89,89,93,93,
%U A168277 97,97,101,101,105,105,109,109,113,113,117,117,121,121,125,125,129,129
%N A168277 a(n) = 2*n - (-1)^n - 2.
%H A168277 Vincenzo Librandi, <a href="/A168277/b168277.txt">Table of n, a(n) for n = 1..1000</a>
%H A168277 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).
%F A168277 a(n) = 4*n - a(n-1) - 6, with n>1, a(1)=1.
%F A168277 a(n) = A163980(n-1), n>1. - _R. J. Mathar_, Nov 25 2009
%F A168277 G.f.: x*(1 + 3*x^2)/( (1+x)*(x-1)^2 ). - _R. J. Mathar_, Jul 15 2013
%F A168277 a(n) = A168276(n) - 1. - _Vincenzo Librandi_, Sep 17 2013
%F A168277 a(n) = a(n-1) +a(n-2) -a(n-3). - _Vincenzo Librandi_, Sep 17 2013
%F A168277 E.g.f.: (-1 + 3*exp(x) + 2*(x - 1)*exp(2*x))*exp(-x). - _G. C. Greubel_, Jul 16 2016
%F A168277 Sum_{n>=1} 1/a(n)^2 = Pi^2/8 + G, where G is Catalan's constant (A006752). - _Amiram Eldar_, Aug 21 2022
%t A168277 CoefficientList[Series[(1 + 3 x^2) / ((1 + x) (x - 1)^2), {x, 0, 80}], x] (* _Vincenzo Librandi_, Sep 16 2013 *)
%t A168277 Table[2 n - (-1)^n - 2, {n, 70}] (* _Bruno Berselli_, Sep 17 2013 *)
%t A168277 LinearRecurrence[{1,1,-1},{1,1,5},70] (* _Harvey P. Dale_, Aug 25 2015 *)
%o A168277 (Magma) [n eq 1 select 1 else 4*n-Self(n-1)-6: n in [1..70]]; // _Vincenzo Librandi_, Sep 16 2013
%o A168277 (PARI) a(n)=2*n-(-1)^n-2 \\ _Charles R Greathouse IV_, Oct 07 2015
%Y A168277 Cf. A016813, A163980, A168276.
%Y A168277 Cf. A006752, A111003 (Pi^2/8).
%K A168277 nonn,easy
%O A168277 1,3
%A A168277 _Vincenzo Librandi_, Nov 22 2009
%E A168277 New definition from _Bruno Berselli_, Sep 17 2013