This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168289 #10 Oct 22 2018 10:34:50 %S A168289 1,1,1,1,6,1,1,19,19,1,1,48,114,48,1,1,109,494,494,109,1,1,234,1847, %T A168289 3472,1847,234,1,1,487,6381,20339,20339,6381,487,1,1,996,21040,107028, %U A168289 179506,107028,21040,996,1,1,2017,67360,524848,1377826,1377826,524848 %N A168289 T(n,k) = 4*A046802(n+1,k+1) - 3*A007318(n,k), triangle read by rows (0 <= k <= n). %F A168289 E.g.f: 4*(1 - x)*exp(t)/(1 - x*exp(t*(1 - x))) - 3*exp(t*(1 + x)). %e A168289 Triangle begins: %e A168289 1; %e A168289 1, 1; %e A168289 1, 6, 1; %e A168289 1, 19, 19, 1; %e A168289 1, 48, 114, 48, 1; %e A168289 1, 109, 494, 494, 109, 1; %e A168289 1, 234, 1847, 3472, 1847, 234, 1; %e A168289 1, 487, 6381, 20339, 20339, 6381, 487, 1; %e A168289 1, 996, 21040, 107028, 179506, 107028, 21040, 996, 1; %e A168289 ... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018 %t A168289 p[t_] = 4*(1 - x)*Exp[t]/(1 - x*Exp[t*(1 - x)]) - 3*Exp[t*(1 + x)]; %t A168289 Table[CoefficientList[FullSimplify[n!*SeriesCoefficient[Series[p[t], {t, 0, n}], n]], x], {n, 0, 10}]//Flatten %o A168289 (Maxima) %o A168289 A046802(n, k) := sum(binomial(n - 1, r)*sum(j!*(-1)^(k - j - 1)*stirling2(r, j)*binomial(r - j, k - j - 1), j, 0, k - 1), r, k - 1, n - 1)$ %o A168289 T(n, k) := 4*A046802(n + 1, k + 1) - 3*binomial(n, k)$ %o A168289 create_list(T(n, k), n, 0, 10, k, 0, n); %o A168289 /* _Franck Maminirina Ramaharo_, Oct 21 2018 */ %Y A168289 Triangles related to Eulerian numbers: A008292, A046802, A060187, A123125. %Y A168289 Cf. A142147, A142175, A168287, A168288, A168290, A168291, A168292, A168293. %K A168289 nonn,easy,tabl %O A168289 0,5 %A A168289 _Roger L. Bagula_, Nov 22 2009 %E A168289 Edited, and new name by _Franck Maminirina Ramaharo_, Oct 21 2018