This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168290 #9 Oct 22 2018 10:34:08 %S A168290 1,1,1,1,7,1,1,23,23,1,1,59,141,59,1,1,135,615,615,135,1,1,291,2305, %T A168290 4335,2305,291,1,1,607,7971,25415,25415,7971,607,1,1,1243,26293, %U A168290 133771,224365,133771,26293,1243,1,1,2519,84191,656039,1722251,1722251,656039 %N A168290 T(n,k) = 5*A046802(n+1,k+1) - 4*A007318(n,k), triangle read by rows (0 <= k <= n). %F A168290 E.g.f.: 5*(1 - x)*exp(t)/(1 - x*exp(t*(1 - x))) - 4*exp(t*(1 + x)). %e A168290 Triangle begins: %e A168290 1; %e A168290 1, 1; %e A168290 1, 7, 1; %e A168290 1, 23, 23, 1; %e A168290 1, 59, 141, 59, 1; %e A168290 1, 135, 615, 615, 135, 1; %e A168290 1, 291, 2305, 4335, 2305, 291, 1; %e A168290 1, 607, 7971, 25415, 25415, 7971, 607, 1; %e A168290 1, 1243, 26293, 133771, 224365, 133771, 26293, 1243, 1; %e A168290 ... reformatted. - _Franck Maminirina Ramaharo_, Oct 21 2018 %t A168290 p[t_] = 5*(1 - x)*Exp[t]/(1 - x*Exp[t*(1 - x)]) - 4*Exp[t*(1 + x)]; %t A168290 Table[CoefficientList[FullSimplify[n!*SeriesCoefficient[Series[p[ t], {t, 0, n}], n]], x], {n, 0, 10}]//Flatten %o A168290 (Maxima) %o A168290 A046802(n, k) := sum(binomial(n - 1, r)*sum(j!*(-1)^(k - j - 1)*stirling2(r, j)*binomial(r - j, k - j - 1), j, 0, k - 1), r, k - 1, n - 1)$ %o A168290 T(n, k) := 5*A046802(n + 1, k + 1) - 4*binomial(n, k)$ %o A168290 create_list(T(n, k), n, 0, 10, k, 0, n); %o A168290 /* _Franck Maminirina Ramaharo_, Oct 21 2018 */ %Y A168290 Triangles related to Eulerian numbers: A008292, A046802, A060187, A123125. %Y A168290 Cf. A142147, A142175, A168287, A168288, A168289, A168291, A168292, A168293. %K A168290 nonn,tabl,easy %O A168290 0,5 %A A168290 _Roger L. Bagula_, Nov 22 2009 %E A168290 Edited, new name by _Franck Maminirina Ramaharo_, Oct 21 2018