This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168296 #17 Feb 07 2025 05:37:25 %S A168296 1,1,2,2,18,18,6,156,432,288,24,792,7416,13248,6624,120,-11280,64800, %T A168296 374400,496800,198720,720,-62640,-1254960,4968000,20865600,22057920, %U A168296 7352640,5040,24012000,-11854080,-125677440,389491200,1288103040,1132306560,323516160 %N A168296 Worpitzky form polynomials for the {1,16,1} A142462 sequence: p(x,n) = Sum_{k=1..n} A(n, k)*binomial(x + k - 1, n - 1). %F A168296 p(x,n) = Sum_{k=1..n} A(n, k)*binomial(x + k - 1, n - 1). %e A168296 Triangle begins: %e A168296 {1}, %e A168296 {1, 2}, %e A168296 {2, 18, 18}, %e A168296 {6, 156, 432, 288}, %e A168296 {24, 792, 7416, 13248, 6624}, %e A168296 {120, -11280, 64800, 374400, 496800, 198720}, %e A168296 {720, -62640, -1254960, 4968000, 20865600, 22057920, 7352640}, %e A168296 {5040, 24012000, -11854080, -125677440, 389491200, 1288103040, 1132306560, 323516160}, %e A168296 ... %t A168296 (* Worpitzky form polynomials for A142462 *) %t A168296 m = 7; %t A168296 A[n_, 1] := 1 A[n_, n_] := 1 %t A168296 A[n_, k_] := (m*n - m*k + 1)A[n - 1, k - 1] + (m*k - (m - 1))A[n - 1, k]; %t A168296 a = Table[A[n, k], {n, 10}, {k, n}]; %t A168296 p[x_, n_] = Sum[a[[n, k]]*Binomial[x + k - 1, n - 1], {k, 1, n}]; %t A168296 Table[CoefficientList[Expand[(n - 1)!*p[x, n]], x], {n, 1, 10}]; %t A168296 Flatten[%] %Y A168296 Cf. A142462. %K A168296 uned,sign,tabl %O A168296 1,3 %A A168296 _Roger L. Bagula_, Nov 22 2009