cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168313 Triangle read by rows, retain 1's as rightmost diagonal of A101688 and replace all other 1's with 2's.

This page as a plain text file.
%I A168313 #22 Aug 08 2018 04:34:08
%S A168313 1,0,1,0,2,1,0,0,2,1,0,0,2,2,1,0,0,0,2,2,1,0,0,0,2,2,2,1,0,0,0,0,2,2,
%T A168313 2,1,0,0,0,0,2,2,2,2,1,0,0,0,0,0,2,2,2,2,1,0,0,0,0,0,2,2,2,2,2,1
%N A168313 Triangle read by rows, retain 1's as rightmost diagonal of A101688 and replace all other 1's with 2's.
%C A168313 Row sums = odd integers repeated: (1, 1, 3, 3, 5, 5,...).
%C A168313 Eigensequence of the triangle = A168314: (1, 1, 3, 5, 13, 29, 71, 165, 401,...).
%H A168313 Boris Putievskiy, <a href="https://arxiv.org/abs/1212.2732">Transformations (of) Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012.
%F A168313 Triangle read by rows, retain 1's as rightmost diagonal of A101688 and replace all other 1's with 2's.
%F A168313 From _Boris Putievskiy_, Jan 09 2013: (Start)
%F A168313 a(n) = 2*A101688(n)-A023531(n).
%F A168313 a(n) = 2*floor((2*A002260(n)+1)/(A003056(n)+3))*A002260(n)-A023531(n).
%F A168313 a(n) = 2*floor((2*n-t*(t+1)+1)/(t+3))*(n-t*(t+1)/2) - floor((sqrt(8*n+1)-1)/2) + t, where t = floor((-1+sqrt(8*n-7))/2). (End)
%e A168313 First few rows of the triangle =
%e A168313 1;
%e A168313 0, 1;
%e A168313 0, 2, 1;
%e A168313 0, 0, 2, 1;
%e A168313 0, 0, 2, 2, 1;
%e A168313 0, 0, 0, 2, 2, 1;
%e A168313 0, 0, 0, 2, 2, 2, 1;
%e A168313 0, 0, 0, 0, 2, 2, 2, 1;
%e A168313 0, 0, 0, 0, 2, 2, 2, 2, 1;
%e A168313 0, 0, 0, 0, 0, 2, 2, 2, 2, 1;
%e A168313 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 1;
%e A168313 0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 1;
%e A168313 ...
%t A168313 rows = 11;
%t A168313 A = Array[Which[#1 == 1, 1, #1 <= #2, 2, True, 0]&, {rows, rows}];
%t A168313 Table[A[[i-j+1, j]], {i, 1, rows}, {j, 1, i}] // Flatten (* _Jean-François Alcover_, Aug 08 2018 *)
%Y A168313 Cf. A101688, A168314, A168315
%K A168313 nonn,tabl
%O A168313 1,5
%A A168313 _Gary W. Adamson_, Nov 22 2009