This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168327 #12 Aug 13 2025 22:49:05 %S A168327 11,127,12197,135937,159319,11092727,11295029,11860867,12685619, %T A168327 14330747,14826809,15000211,15929741,16128487,18869743,19393931, %U A168327 124137569,126198073,127818127,129503629,138958219,150243409,154439939,160698457,175686967,191733851,195443993 %N A168327 Primes of concatenated form "1 n^3". %C A168327 (1) It is conjectured that sequence is infinite. %C A168327 (2) These are primes all with "leading" digit "1", they are concatenations of two cubic numbers: 1^3 and n^3, n is a natural. %D A168327 Harold Davenport, Multiplicative Number Theory, Springer-Verlag New-York 1980 %D A168327 Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005 %D A168327 Paulo Ribenboim, The New Book of Prime Number Records, Springer 1996 %H A168327 Vincenzo Librandi, <a href="/A168327/b168327.txt">Table of n, a(n) for n = 1..1000</a> %F A168327 If n^3 is a d-digit number and d no multiple of 3, then p=10^d+n^3, where n is odd and no multiple of 5. %F A168327 a(n) = c+10^A055642(c) where c=A167725(n). - _R. J. Mathar_, Nov 23 2009 %e A168327 (1) 10^1+1^3=11 = prime(5) = a(1). %e A168327 (2) 10^2+3^3=127 = prime(31) = a(2). %e A168327 (3) 10^4+13^3=12197 = prime(1458) = a(3). %t A168327 Select[FromDigits[Join[{1},IntegerDigits[#]]]&/@(Range[500]^3),PrimeQ] (* _Harvey P. Dale_, May 16 2012 *) %Y A168327 Cf. A168147, A167535. %K A168327 nonn,base %O A168327 1,1 %A A168327 Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 23 2009 %E A168327 Edited by _Charles R Greathouse IV_, Apr 24 2010