This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168352 #24 Sep 10 2024 20:19:42 %S A168352 255255,285285,345345,373065,435435,440895,451605,465465,504735, %T A168352 533715,555555,569415,596505,608685,615615,636405,645645,672945, %U A168352 680295,692835,705705,719355,726495,752115,770385,780045,795795,803985,805035,811965,823515,838695,844305,858585 %N A168352 Products of 6 distinct odd primes. %H A168352 David A. Corneth, <a href="/A168352/b168352.txt">Table of n, a(n) for n = 1..10000</a> %F A168352 A067885 INTERSECT A005408. [_R. J. Mathar_, Nov 24 2009] %e A168352 255255 = 3*5*7*11*13*17 %e A168352 285285 = 3*5*7*11*13*19 %e A168352 345345 = 3*5*7*11*13*23 %e A168352 435435 = 3*5*7*11*13*29 %t A168352 f[n_]:=Last/@FactorInteger[n]=={1,1,1,1,1,1}&&FactorInteger[n][[1,1]]>2; lst={};Do[If[f[n],AppendTo[lst,n]],{n,6*9!}];lst %o A168352 (PARI) is(n) = {n%2 == 1 && factor(n)[,2]~ == [1,1,1,1,1,1]} \\ _David A. Corneth_, Aug 26 2020 %o A168352 (Python) %o A168352 from sympy import primefactors, factorint %o A168352 print([n for n in range(1, 1000000, 2) if len(primefactors(n)) == 6 and max(list(factorint(n).values())) == 1]) # _Karl-Heinz Hofmann_, Mar 01 2023 %o A168352 (Python) %o A168352 from math import prod, isqrt %o A168352 from sympy import primerange, integer_nthroot, primepi %o A168352 def A168352(n): %o A168352 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b+1,isqrt(x//c)+1),a+1)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b+1,integer_nthroot(x//c,m)[0]+1),a+1) for d in g(x,a2,b2,c*b2,m-1))) %o A168352 def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,1,2,1,6))) %o A168352 def bisection(f, kmin=0, kmax=1): %o A168352 while f(kmax) > kmax: kmax <<= 1 %o A168352 while kmax-kmin > 1: %o A168352 kmid = kmax+kmin>>1 %o A168352 if f(kmid) <= kmid: %o A168352 kmax = kmid %o A168352 else: %o A168352 kmin = kmid %o A168352 return kmax %o A168352 return bisection(f,n,n) # _Chai Wah Wu_, Sep 10 2024 %Y A168352 Cf. A005408, A067885. %Y A168352 Cf. A046391 (5 distinct odd primes). %K A168352 nonn,easy %O A168352 1,1 %A A168352 _Vladimir Joseph Stephan Orlovsky_, Nov 23 2009 %E A168352 Definition corrected by _R. J. Mathar_, Nov 24 2009 %E A168352 More terms from _David A. Corneth_, Aug 26 2020