cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168363 Squares and cubes of primes.

This page as a plain text file.
%I A168363 #29 Aug 13 2024 11:21:15
%S A168363 4,8,9,25,27,49,121,125,169,289,343,361,529,841,961,1331,1369,1681,
%T A168363 1849,2197,2209,2809,3481,3721,4489,4913,5041,5329,6241,6859,6889,
%U A168363 7921,9409,10201,10609,11449,11881,12167,12769,16129,17161,18769,19321,22201
%N A168363 Squares and cubes of primes.
%C A168363 Primitive elements for powerful numbers; every powerful is product of these numbers. The representation is not necessarily unique.
%F A168363 A178254(a(n)) = 2. - _Reinhard Zumkeller_, May 24 2010
%F A168363 Sum_{n>=1} 1/a(n) = P(2) + P(3) = 0.6270100593..., where P is the prime zeta function. - _Amiram Eldar_, Dec 21 2020
%t A168363 m=30000;Union[Prime[Range[PrimePi[m^(1/2)]]]^2,Prime[Range[PrimePi[m^(1/3)]]]^3] (* _Vladimir Joseph Stephan Orlovsky_, Apr 11 2011 *)
%t A168363 With[{nn=50},Take[Union[Flatten[Table[{n^2,n^3},{n,Prime[Range[ nn]]}]]],nn]] (* _Harvey P. Dale_, Feb 26 2015 *)
%o A168363 (PARI) for(n=1,40000,fm=factor(n);if(matsize(fm)[1]==1&(fm[1,2]==2||fm[1,2]==3),print1(n",")))
%o A168363 (PARI) is(n)=my(k=isprimepower(n)); k && k<4 \\ _Charles R Greathouse IV_, May 24 2013
%o A168363 (Python)
%o A168363 from math import isqrt
%o A168363 from sympy import primepi, integer_nthroot
%o A168363 def A168363(n):
%o A168363     def f(x): return n+x-primepi(isqrt(x))-primepi(integer_nthroot(x,3)[0])
%o A168363     m, k = n, f(n)
%o A168363     while m != k:
%o A168363         m, k = k, f(k)
%o A168363     return int(m) # _Chai Wah Wu_, Aug 09 2024
%Y A168363 Cf. A001694, A053810, A001248, A030078, A087797, A178254.
%K A168363 nonn
%O A168363 1,1
%A A168363 _Franklin T. Adams-Watters_, Nov 23 2009