cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168375 Natural numbers n for which the concatenation p= "1 n^3" (A168327) is prime.

Original entry on oeis.org

1, 3, 13, 33, 39, 103, 109, 123, 139, 163, 169, 171, 181, 183, 207, 211, 289, 297, 303, 309, 339, 369, 379, 393, 423, 451, 457, 463, 1021, 1027, 1047, 1053, 1057, 1081, 1087, 1111, 1123, 1161, 1189, 1201, 1249, 1273, 1293, 1303, 1329, 1339, 1351, 1381, 1387
Offset: 1

Views

Author

Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 24 2009

Keywords

Comments

It is conjectured that sequence is infinite

Examples

			(1) "1 1^3"=10^1+1^3=11=prime(5) gives a(1)=1
(2) "1 3^3"=10^2+3^3=127=prime(31) gives a(2)=3
(3) "1 13^3"=10^4+13^3=12197=prime(1458) gives a(3)=13
		

References

  • Harold Davenport, Multiplicative Number Theory, Springer-Verlag New-York 1980
  • Friedhelm Padberg, Elementare Zahlentheorie, Spektrum Akademischer Verlag, 2. Auflage 1991
  • Paulo Ribenboim, The New Book of Prime Number Records, Springer 1996

Crossrefs

Cf. A000040 The prime numbers
Cf. A168147 Primes of the form p = 1 + 10*n^3 for a natural number n
Cf. A168327 Primes of concatenated form p= "1 n^3"
Cf. A167535 Concatenation of two square numbers which give a prime

Formula

If n^3 is a d-digit natural number, odd and no multiple of 5, and d no multiple of 3, then p=10^d+n^3

Extensions

Edited by Charles R Greathouse IV, Apr 23 2010