This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168384 #30 Mar 19 2024 09:33:34 %S A168384 6,6,14,14,22,22,30,30,38,38,46,46,54,54,62,62,70,70,78,78,86,86,94, %T A168384 94,102,102,110,110,118,118,126,126,134,134,142,142,150,150,158,158, %U A168384 166,166,174,174,182,182,190,190,198,198,206,206,214,214,222,222,230,230 %N A168384 a(n) = 4*n - 2*(-1)^n. %H A168384 Vincenzo Librandi, <a href="/A168384/b168384.txt">Table of n, a(n) for n = 1..1000</a> %H A168384 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1). %F A168384 a(n) = 8*n - a(n-1) - 4, with n>1, a(1)=6. %F A168384 From _Vincenzo Librandi_, Sep 18 2013: (Start) %F A168384 G.f.: 2*x*(3 + x^2)/((1+x)*(x-1)^2). %F A168384 a(n) = a(n-1) + a(n-2) - a(n-3). %F A168384 a(n) = 6 + 8*floor((n-1)/2). (End) %F A168384 E.g.f.: 2*(-1 + exp(x) + 2*x*exp(2*x))*exp(-x). - _G. C. Greubel_, Jul 19 2016 %t A168384 CoefficientList[Series[(6 + 2 x^2)/((1 + x) (x - 1)^2), {x, 0, 70}], x] (* _Vincenzo Librandi_, Sep 18 2013 *) %t A168384 LinearRecurrence[{1,1,-1},{6,6,14},70] (* _Harvey P. Dale_, Mar 14 2023 *) %o A168384 (Magma) [4*n -2*(-1)^n: n in [1..70]]; // _Vincenzo Librandi_, Sep 18 2013 %o A168384 (Magma) [6+8*Floor((n-1)/2): n in [1..70]]; // _Vincenzo Librandi_, Sep 18 2013 %Y A168384 Cf. A296910. %K A168384 nonn,easy %O A168384 1,1 %A A168384 _Vincenzo Librandi_, Nov 24 2009 %E A168384 Definition rewritten by _Vincenzo Librandi_, Sep 18 2013