This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168417 #4 Jan 21 2013 09:04:44 %S A168417 3,13,103,109,139,163,181,211,379,457,463,1021,1087,1123,1201,1249, %T A168417 1303,1381,1579,1597,1609,1699,1861,1873,1987,2011,2029,2053,2143, %U A168417 2221,2281,2341,2473,2503,2557,2731,2857,3061,3067,3217,3253,3271,3319,3331,3517 %N A168417 Primes q for which 1 concatenated with q^3 (A168327) is prime. %C A168417 It is conjectured that this sequence is infinite. %D A168417 Harold Davenport, Multiplicative Number Theory, Springer-Verlag New-York 1980 %D A168417 Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005 %e A168417 (1) "1 3^3"=10^2+3^3=127=prime(31) gives a(1)=3=prime(2) %e A168417 (2) "1 103^3"=10^7+103^3=11092727=prime(732258) gives a(3)=103=prime(27) %t A168417 Select[Prime[Range[500]],PrimeQ[FromDigits[Join[{1},IntegerDigits[ #^3]]]]&] (* _Harvey P. Dale_, Jan 21 2013 *) %Y A168417 A168147 Primes of the form p = 1 + 10*n^3 for a natural number n %Y A168417 A168327 Primes of concatenated form p= "1 n^3" %Y A168417 A168375 Natural numbers n for which the concatenation p= "1 n^3" is prime %K A168417 nonn,base %O A168417 1,1 %A A168417 Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 25 2009 %E A168417 Edited and extended by _Charles R Greathouse IV_, Apr 23 2010