This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168479 #2 Mar 30 2012 18:37:20 %S A168479 1,3,21,217,2895,46479,857670,17619348,394066449,9445681950, %T A168479 239946999264,6407385578778,178774882463450,5188026867995184, %U A168479 156036783823130184,4850255971984578744,155467140310522090338 %N A168479 G.f. satisfies: A(x/A(x)) = G(x)^3 where G(x) = 1 + x*G(x)^3 is the g.f. of A001764. %F A168479 G.f. satisfies: A(x) = [1 + A(x)*Series_Reversion(x/A(x))]^3. %F A168479 G.f. satisfies: A( (x*(1-x)^2)/A(x*(1-x)^2) ) = 1/(1-x)^3. %F A168479 G.f. satisfies: A( (x/(1+x)^3)/A(x/(1+x)^3) ) = (1 + x)^3. %F A168479 Self-convolution cube of A168478. %e A168479 G.f.: A(x) = 1 + 3*x + 21*x^2 + 217*x^3 + 2895*x^4 + 46479*x^5 +... %e A168479 A(x/A(x)) = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 +...+ A001764(n+1)*x^n +... %o A168479 (PARI) {a(n)=local(A=1+x, F=sum(k=0, n, binomial(3*k+1, k)/(3*k+1)*x^k)+x*O(x^n)); for(i=0, n, A=subst(F^3, x, serreverse(x/(A+x*O(x^n))))); polcoeff(A, n)} %o A168479 (PARI) {a(n)=local(A=1+x);for(i=1,n,A=(1+A*serreverse(x/(A+x*O(x^n))))^3); polcoeff(A,n)} %Y A168479 Cf. A168478, A168449 (variant), A001764. %K A168479 nonn %O A168479 0,2 %A A168479 _Paul D. Hanna_, Dec 06 2009