This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A168487 #6 Nov 21 2013 12:49:44 %S A168487 127,827,6427,12527,34327,219727,491327,1562527,2438927,3276827, %T A168487 8518427,16637527,22698127,43897627,45653327,51200027,77868827, %U A168487 119101627,129502927,140492827,156089627,177156127,190662427,251545627,257135327 %N A168487 Primes of the form 100n^3 + 27. %C A168487 (1) These primes all with the end digits 2 and 7 are concatenations of two CUBIC numbers: "n^3 3^3". %C A168487 (2) It is conjectured that sequence is infinite. %D A168487 Harold Davenport, Multiplicative Number Theory, Springer-Verlag New-York 1980 %D A168487 Leonard E. Dickson: History of the Theory of numbers, vol. I, Dover Publications 2005 %D A168487 Friedhelm Padberg, Elementare Zahlentheorie, Spektrum Akademischer Verlag, 2. Auflage 1991 %t A168487 Select[100Range[140]^3+27,PrimeQ] (* _Harvey P. Dale_, Aug 22 2011 *) %Y A168487 A167535 Concatenation of two square numbers which give a prime %Y A168487 A168147 Primes of the form p = 1 + 10*n^3 for a natural number n %Y A168487 A168327 Primes of concatenated form p = "1 n^3" %K A168487 nonn %O A168487 1,1 %A A168487 Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Nov 27 2009 %E A168487 Edited by _Charles R Greathouse IV_, Apr 24 2010