cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A168490 Sequence with Hankel transform equal to 2^floor(n^2/2).

Original entry on oeis.org

1, 1, 2, 6, 24, 112, 560, 2888, 15136, 80160, 427968, 2300736, 12445440, 67702272, 370205184, 2033976960, 11224014336, 62186741248, 345825348608, 1929744008192, 10802203119616, 60644473282560, 341383505977344, 1926554113200128, 10897582426832896, 61775951537520640, 350901756369403904
Offset: 0

Views

Author

Paul Barry, Nov 27 2009

Keywords

Comments

Hankel transform is A099202 (a trivial Somos-4 sequence linked to y^2 = 1-12*x+44*x^2-48*x^3).

Programs

  • Mathematica
    CoefficientList[Series[(1-2*x-Sqrt[(1-2*x)(1-10*x+24*x^2)])/(4x*(1-2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 20 2012 *)

Formula

G.f.: 1/(1-x/(1-x/(1-2*x/(1-2*x/(1-x/(1-x/(1-2*x/(1-2*x/(1-x/(1-x/(1-2*x/(1-... (continued fraction);
G.f.: 1/(1-x-x^2/(1-3*x-4*x^2/(1-3*x-x^2/(1-3*x-4*x^2/(1-3*x-x^2/(1-3*x-4*x^2/(1-... (continued fraction);
G.f.: (1-2*x-sqrt((1-2*x)*(1-10*x+24*x^2)))/(4*x*(1-2*x)).
Recurrence: (n+1)*a(n) = 4*(3*n-1)*a(n-1) - 4*(11*n-17)*a(n-2) + 24*(2*n-5)*a(n-3). - Vaclav Kotesovec, Oct 20 2012
a(n) ~ 2^(n-5/2)*3^(n+1)/(sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 20 2012
a(n) = Sum_{k=0..n} A168511(n,k)*2^(n-k). - Philippe Deléham, Mar 19 2013